Preservation of Vegetation (PV)

Practice Description
Preservation of vegetation is the avoidance of an area during land disturbing and construction activities to prevent mechanical and other injury to desirable plants in the planned landscape. The practice provides erosion and sediment control and is applicable where vegetative cover is desired and the existing plant community is compatible with the planned landscape.

Planning Considerations
Preservation of vegetation requires good site management to minimize the impact of construction activities on existing vegetation.

Plants to save should be identified prior to any construction activity.

Proper maintenance, especially during construction, is important to ensure healthy vegetation that can control erosion.

Different species, soil types, and climatic conditions will require different maintenance activities.

Design Criteria and Installation
Preservation requirements should be designed by a qualified design professional and plans should be made available to field personnel prior to start of construction.
Mark Plant Area for Retention

Groups of plants and individual trees to be retained should be located on a plan map. Limits of clearing should be planned outside the drip line of groups or individual trees to be saved. The clearing should never be closer than 5 feet to the trunk of a tree.

Flagging or other appropriate means of marking the site of the groups of plants and individual trees to be retained should be required before construction begins. Individual trees to be retained should be marked with a highly visible paint or surveyor’s ribbon in a band circling the tree at a height visible to equipment operators.

Plant Protection

Restrict construction equipment, vehicular traffic, stockpiles of construction materials, topsoil etc., from the areas where plants are retained and restrict these activities from occurring within the drip line of any tree to be retained. Trees being removed shall not be pushed into trees to be retained. Equipment operators shall not clean any of their equipment by slamming it against trees to be retained.

Restrict burning of debris within 100 feet of the plants being preserved. Fires shall be limited in size to prevent damage to any nearby trees.

Toxic material shall not be stored any closer than 100 feet to the drip line of any trees to be retained. Toxic materials shall be managed and disposed of according to state laws.

Fencing and Armoring

Groups of plants and trees should be protected by fencing or armoring where necessary (See Figure PV-I). The following types of fencing or armoring may be used:

- Board Fence; a board fence may be constructed with 4” square posts set securely in the ground and protruding at least 4 feet above the ground. A minimum of 2 horizontal boards should be placed between the posts. The fence should be placed at the limits of the clearing around the drip line of the tree. If it is not practical to erect a fence at the drip line, construct a triangular fence near the trunk. The limits of clearing will still be the drip line as the root zone within the drip line will still require protection.

- Cord Fence; Posts at least 2” square or 2” in diameter set securely in the ground and protruding at least 4 feet above the ground; posts should be placed at the limits of clearing with 2 rows of cord ¼” or thicker at least 2 feet apart running between posts with strips of surveyor’s tape tied securely to the string at intervals of 3 feet or less.
Surface Stabilization

- Earth Berms; Temporary earth berms may be constructed. The base of the berm on the tree side should be located along the limits of clearing. Earth berms may not be used for this purpose if their presence will create drainage patterns that cause erosion.

- Additional Trees; Additional trees may be left standing as protection between the trees to be retained and the limits of clearing. However, in order for this alternative to be used, trees in the buffer must be no more than 6 feet apart to prevent passage of equipment and material through the buffer.

- Plan for these additional trees to be evaluated prior to the completion of construction and either given sufficient treatment to ensure survival or be removed.

- Trunk Armoring; As a last resort, a tree may be armored with burlap wrapping and 2” studs wired vertically no more than 2” apart to a height of 5 feet. The armoring should encircle the tree trunk. Nothing should ever be nailed to a tree. The root zone within the drip line will still require protection.

- Fencing and armoring devices should be in place before any construction work is done and should be kept in good condition for the duration of construction activities. Fencing and armoring should not be removed until the completion of the construction project.

Figure PV-1 Fencing and Armoring
Raising the Grade

When the ground level must be raised around an existing tree or group of trees, several methods may be used to insure survival.

A well may be created around a group of trees or an individual tree slightly beyond the drip line to retain the natural soil in the area of the feeder roots (see Figure PV-2).

When the well alternative is not practical or desirable, remove vegetation and organic matter from beneath the tree or trees for a distance of 3 feet beyond the drip line and loosen the surface soil to a depth of approximately 3” without damaging the roots.

Apply fertilizer in the root area of the tree to be retained. A soil test is the best way to determine what type of fertilizer to use. In the absence of a soil test, fertilizer should be applied at the rate of 1 to 2 pounds of 10-8-6 or 10-6-4 per inch of diameter at breast height (dbh) for trees under 6” dbh and at the rate of 2 to 4 pounds of 10-8-6 or 10-6-4 per inch of dbh for trees over 6” dbh.

A dry well shall be constructed so as to allow for tree trunk diameter growth (see Figure PV-3). A space of at least 1 foot between the tree trunk and the well wall is adequate for old, slow growing trees. Clearance for younger trees shall be at least 2 feet. The well shall be high enough to bring the top just above the level of the proposed fill. The well wall shall taper slightly away from the tree trunk at a rate of 1” per foot of wall height.

The well wall shall be constructed of large stones, brick, building tile, concrete blocks, or cinder blocks. Openings should be left through the wall of the well to allow for free movement of air and water. Mortar shall only be used near the top of the well and only above the porous fill.

Drain lines composed of 4” high quality drain tiles shall begin at the lowest point inside the well and extend outward from the tree trunk in a wheel and spoke pattern with the trunk as the hub. Radial drain lines shall slope away from the well at a rate of ¼” per foot. The circumference line of tiles should be located beneath the drip line of the trees. Vertical tiles or pipes shall be placed over the intersections of the two tile systems if a fill of more than 2 feet is contemplated. Vertical tiles shall be held in place with stone fill. Tile joints shall be tight. A few radial tiles shall extend beyond each intersection and shall slope sharply downward to insure good drainage. Tar paper or its approved equivalent shall be placed over the tile and/or pipe joints to prevent clogging and large stone shall be placed around and over drain tiles and/or pipes for protection.

A layer of 2” to 6” stone shall be placed over the entire area under the tree from the well outward at least as far as the drip line. For fills up to 2 feet deep, a layer of stone 8” to 12” thick should be adequate.

A thick layer of this stone not to exceed 30” will be needed for deeper fills. A layer of ¾” to 1” stone covered by straw, fiberglass mat, or a manufactured filter fabric shall be used to prevent soil from clogging the space between stones. Cinders shall not be used as fill material. Filling shall be completed with porous soil such as topsoil until the desired grade is reached. This soil shall be suitable to sustain specified vegetation.
Crushed stone shall be placed inside the dry well over the openings of the radial tiles to prevent clogging. The area between the trunk and the well wall shall either be covered by an iron grate or filled with a 50-50 mixture of crushed charcoal and sand to prevent anyone from falling into the dry well.

Where water drainage through the soil is not a problem, coarse gravel in the fill may be substituted for the tile. This material has sufficient porosity to ensure air drainage. Instead of the vertical tiles or pipes in the system, stones, crushed rock and gravel may be added so that the upper level of these porous materials slants toward the surface in the vicinity below the drip line.

Raising the grade on only one side of a tree or group of trees may be accomplished by constructing only half of one of these systems.

Lowering the Grade

Shrubs and trees shall be protected from the harmful grade cuts by the construction of a tree wall (see Figure PV-4). Following excavation, all tree roots that are exposed and/or damaged shall be trimmed cleanly and covered with moist peat moss, burlap or other suitable material to keep them from drying out.

The wall shall be constructed of large stones, brick, building tile, concrete block or cinder block. The wall should be backfilled with topsoil, peat moss, or other organic matter to retain moisture and aid in root development. Apply fertilizer and water thoroughly. The tree plants should be pruned to reduce the leaf surface in proportion to the amount of root loss. Drainage should be provided through the wall so water will not accumulate behind
the wall. Lowering the grade on one side of the tree or group of trees can be accomplished by constructing only half of this system.

Figure PV-3 Tree Well Detail
Figure PV-4 Tree Wall Detail
Trenching and Tunneling

Trenching should be done as far away from the trunks of trees as possible, preferably outside the branches or crown spreads of trees, to reduce the amount of root area damaged or killed by trenching activities. When possible trenches should avoid large roots or root concentrations. This can be accomplished by curving the trench or by tunneling under large roots and areas of heavy root concentration. Tunneling under a species that does not have a large tap root may be preferable to trenching beside it as it has less impact on root systems (see Figure PV-5).

Roots should not be left exposed to the air but should be covered with soil as soon as possible or protected and kept moist with burlap or peat moss until the trench or tunnel can be filled. The ends of damaged and cut roots shall be cut off smoothly and moist peat moss, burlap or topsoil should be placed over the exposed area.

Trenches and tunnels shall be filled as soon as possible. Care should be taken to ensure that air spaces are not left in the soil. Peat moss or other organic matter shall be added to the fill material as an aid to inducing and developing root growth. The tree should be fertilized and mulched to stimulate new root growth and enhance general tree vigor. If a large part of the root system has been damaged the crown leaf surface area should be reduced in proportion to the root damage. This may be accomplished by pruning 20-30 percent of the crown foliage. If the roots are damaged during the winter the crown should be pruned before the next growing season. If roots are cut during the growing season, pruning should be done immediately.
Treating Damaged Trees

When trees are damaged during construction activities certain maintenance practices can be applied to protect the health of the tree.

Soil aeration may be needed if the soil has been compacted. The soil around trees can be aerated by punching holes 1 foot deep and 18” apart under the crown of trees with an iron pipe.

Damaged roots should be cut off cleanly and moist peat moss, burlap or topsoil should be placed over the exposed area. Bark damage should be treated by removing loose bark.

Tree limbs damaged during construction or removed for any other reason shall be cut off above the collar at the branch junction.
Trees that have been stressed or damaged should be fertilized to aid their recovery.

Trees should be fertilized in the spring or fall. Fall applications are preferred.

Fertilizer should be applied to the soil over the feeder roots. In no case should it be applied closer than 3 feet to the trunk. Root systems of trees extend some distance beyond the drip line. The area to be fertilized should be increased by ¼ the area of the crown. A soil test is the best way to determine what type of fertilizer to use. In the absence of a soil test, fertilizer should be applied at the rate of 1 to 2 pounds of 10-8-6 or 10-6-4 per inch of dbh for trees under 6″ dbh and at the rate of 2 to 4 pounds of 10-8-6 or 10-6-4 per inch of dbh for trees over 6″ dbh.

A ground cover or organic mulch layer should be maintained around trees to prevent erosion, protect roots and to conserve water.

Verification of Practice

Check to determine that specifications are met as the areas are identified for retention, as the plants are protected during construction and that damaged plants are treated or replaced.

Common Problems

Consult with a qualified design professional if any of the following occur:

- Soil compaction appears to be retarding plant growth or affecting plant health.
- Damage to plants appears to be severe and life threatening.
- Plants appear to be of poor quality and are undesirable for retention.

Problems during construction that require remedial actions:

- Erosion – eroded areas should be vegetated to grass or a suitable ground cover.
- Severely damaged trees, shrubs or vines should be replaced.

Maintenance

Enhance and maintain plant growth and health according to the maintenance plan. This may involve applying fertilizer, spreading mulch and pruning trees and shrubs.

Replace dead plants as needed to maintain desired landscape cover. Additional information about plantings is found in practices *Permanent Seeding, Shrub, Vine and Groundcover Planting, and Tree Planting on Disturbed Areas*.
References

BMPs from Volume 1

Chapter 4
Land Grading (LG) 4-16
Permanent Seeding (PS) 4-53
Shrub, Vine, and Groundcover Planting (SVG) 4-80
Tree Planting on Disturbed Areas (TP) 4-110