Temporary Seeding (TS)

Practice Description

Temporary seeding is the establishment of fast-growing annual vegetation from seed on disturbed areas. Temporary vegetation provides economical erosion control for up to a year and reduces the amount of sediment moving off the site.

This practice applies where short-lived vegetation can be established before final grading or in a season not suitable for planting the desired permanent species. It helps prevent costly maintenance operations on other practices such as sediment basins and sediment barriers. In addition, it reduces problems of mud and dust production from bare soil surfaces during construction. Temporary or permanent seeding is necessary to protect earthen structures such as dikes, diversions, grass-lined channels and the banks and dams of sediment basins.

Planning Considerations

Temporary vegetative cover can provide significant short-term erosion and sediment reduction before establishing perennial vegetation.

Temporary vegetation will reduce the amount of maintenance associated with sediment basins.

Temporary vegetation is used to provide cover for no more than 1 year. Permanent vegetation should be established at the proper planting time for permanent vegetative cover.

Certain plants species used for temporary vegetation will produce large quantities of residue which can provide mulch for establishment of the permanent vegetation.

Proper seedbed preparation and selection of appropriate species are important with this practice. Failure to follow establishment guidelines and recommendations carefully may result in an inadequate or short-lived stand of vegetation that will not control erosion.

The selection of plants for temporary vegetation must be site specific. Factors that should be considered are types of soils, climate, establishment rates, and management requirements of the vegetation. Other factors that may be important are wear, mowing tolerance, and salt tolerance of vegetation.

Seeding properly carried out within the optimum dates has a higher probability of success. It is also possible to have satisfactory establishment when seeding outside these dates. However, as plantings are deviated from the optimum dates, the probability of failure increases rapidly. Seeding dates should be taken into account in scheduling land-disturbing activities.

Site quality impacts both short-term and long-term plant success. Sites that have compacted soils should be modified whenever practical to improve the potential for plant growth.

The operation of equipment is restricted on slopes steeper than 3:1, severely limiting the quality of the seedbed that can be prepared. Provisions for establishment of vegetation on steep slopes can be made during final grading. In construction of fill slopes, for example, the last 4-6" might not be compacted. A loose, rough seedbed with irregularities that hold seeds and fertilizer is essential for hydroseeding. Cut slopes should be roughened (see practice *Land Grading*).

Good mulching practices are critical to protect against erosion on steep slopes. When using straw, anchor with netting or asphalt. On slopes steeper than 2:1, jute, excelsior, or synthetic matting may be required to protect the slope.

The use of irrigation (temporary or permanent) will greatly improve the success of vegetation establishment.

Design Criteria and Installation

Prior to start of installation, plant materials, seeding rates and planting dates should be specified by a qualified design professional. Plans and specifications should be referred to by field personnel throughout the installation process.

Scheduling

Plantings should be made during the specified planting period if possible. When sites become available to plant outside of the recommended planting period, either temporary seeding, mulching or chemical stabilization will be more appropriate than leaving the surface bare for an extended period. If lime and fertilizer application rates are not specified, take soil samples during the final grading operation from the top 6" in each area to be seeded. Submit samples to a soil testing laboratory for lime and fertilizer recommendations.

Plant Selection

Select plants that can be expected to meet planting objectives. To simplify plant selection, use Table TS-1, *Commonly Used Plants for Temporary Cover* and Figure TS-1, *Geographical Areas for Species Adaptation and Seeding Dates*. Seeding mixtures commonly specified by the Mississippi Department of Transportation are an appropriate alternative for plantings on rights-of-ways. Additional information related to plantings in Mississippi is found in Chapter 2 in the section Non-woody Vegetation for Erosion and Sediment Control.

Species	Seeding Rates/Ac	Planting Time	Desired pH Range	Fertilization Rate/Acre	Method of Establishment	Zone of Adaptability
Wheat	90 lbs. alone	9/1 – 11/30	6.0 - 7.0	600 lbs. 13-13-13	Seed	All
Ryegrass	30 lbs.	9/1 – 11/30	6.0 - 7.0	600 lbs. 13-13-13	Seed	All
White Clover	5 lbs	9/1 – 11/30	6.0 - 7.0	400 lbs. 13-13-13	Seed	All
Crimson Clover	25 lbs. alone 15 lbs. mix	9/1 – 11/30	6.0 - 7.0	400 lbs. 13-13-13	Seed	All
Hairy Vetch	30 lbs.	9/1 – 11/30	6.0 - 7.0	400 lbs. 13-13-13	Seed	All
Browntop Millet	40 lbs. alone 15 lbs. mix	4/1 – 8/30	6.0 - 7.0	600 lbs. 13-13-13	Seed	All

Table TS-I Commonly Used Plants for Temporary Cover

Figure TS-1 Geographical Areas for Species Adaptation

Site Preparation and Soil Amendments

Complete grading and shaping before applying soil amendments, if needed, to provide a surface on which equipment can safely and efficiently be used to apply soil amendments and accomplish seedbed preparation and seeding. Incorporate lime and fertilizer into the top 6" of soil during seedbed preparation.

Lime

Apply lime according to soil-test recommendations. If a soil test is not available, use 1 ton of agricultural limestone or equivalent per acre on coarse-textured soils and 2 tons per acre on fine textured soils. Do not apply lime to alkaline soils or to areas that have been limed during the preceding 2 years. Other liming materials that may be selected should be provided in amounts that provide equal value to the criteria listed for agricultural lime or be used in combination with agricultural limestone or Selma chalk to provide equivalent values to agricultural limestone.

Fertilizer

Apply fertilizer according to soil-test results. If a soil test is not available, apply 8-24-24 fertilizer.

When vegetation has emerged in a stand and is growing, 30 to 40 lbs/acre (approximately $0.8 \text{ lbs}/1000 \text{ ft}^2$) of additional nitrogen fertilizer should be applied.

Note: Fertilizer can be blended to meet exact fertilizer recommendations. Take soiltest recommendations to local fertilizer dealer for bulk-fertilizer blends. This may be more economical than bagged fertilizer.

Seedbed Preparation

Good seedbed preparation is essential to successful plant establishment. A good seedbed is well pulverized, loose, and smooth. If soils become compacted during grading, loosen them to a depth of 6" to 8" using a ripper or chisel plow.

If rainfall has caused the surface to become sealed or crusted, loosen it just prior to seeding by disking, raking, harrowing, or other suitable methods. When hydroseeding methods are used, the surface should be left with a more irregular surface of clods.

Planting Methods

Seeding

Evenly apply seed using a cyclone seeder (broadcast), drill seeder, cultipacker seeder, or hydroseeder. Broadcast seeding and hydroseeding are appropriate for steep slopes where equipment cannot operate safely. Small grains should be planted no more than 1'' deep, and grasses and legumes no more than $\frac{1}{2}''$ deep. Seed that are broadcast must be covered by raking or chain dragging, and then lightly firmed with a roller or cultipacker.

Hydroseeding

Surface roughening is particularly important when hydroseeding, as a roughened slope will provide some natural coverage for lime, fertilizer, and seed. The surface should not be compacted or left smooth. Fine seedbed preparation is not necessary

for hydroseeding operations; large clods, stones, and irregularities provide cavities in which seeds can lodge.

Mix seed, use an inoculant if required, and mix a seed carrier with water and apply as slurry uniformly over the area to be treated. The seed carrier should be a cellulose fiber, natural-wood fiber or other approved fiber-mulch material which is dyed an appropriate color to facilitate uniform application of seed. Use the correct legume inoculant at 4 times the recommended rate when adding inoculant to a hydroseeder slurry. The mixture should be applied within one hour after mixing to reduce damage to seed.

Fertilizer should not be mixed with the seed-inoculant mixture because fertilizer salts may damage seed and reduce germination and seedling vigor. Fertilizer may be applied with a hydroseeder as a separate operation after seedlings are established.

Mulching

The use of an appropriate mulch provides instant cover and helps ensure establishment of vegetative cover under normal conditions and is essential to seeding success under harsh site conditions (see the *Mulching Practice* for guidance). Harsh site conditions include the following: slopes steeper than 3:1 and adverse soils (soils that are shallow to rock, rocky, or high in clay or sand). Areas with concentrated flow should be treated differently and require a hydromulch formulated for channels or use of an appropriate erosion control blanket.

Verification of Installation

Check materials and installation for compliance with specifications during installation of products.

Common Problems

Consult with a qualified design professional if the following occurs:

Design specifications for seed variety, seeding dates or mulching cannot be met; substitutions may be required. Unapproved substitutions could lead to failure.

Seeding outside of the recommendations results in an inadequate stand. Reseed according to specifications of a qualified design professional (see recommendations under Maintenance).

Maintenance

Reseeding

Inspect seedings weekly until a stand is established and at least monthly thereafter for stand survival and vigor. Also, inspect the site for erosion.

Eroded areas should be addressed appropriately by filling and/or smoothing, and a reapplication of lime, fertilizer, seed and mulch.

A stand should be uniform and dense for best results. Stand conditions, particularly the vegetative coverage, will determine the extent of remedial actions, such as seedbed preparation and reseeding. A qualified design professional should be consulted to advise on remedial actions. Consider no-till planting.

Fertilizing

If vegetation fails to grow, have the soil tested to determine whether its pH is in the correct range or whether nutrient deficiency is a problem.

Satisfactory establishment may require refertilizing the stand, especially if the planting is made early in the planting season. Follow soil-test recommendations or the specifications provided to establish the planting.

Mowing

Temporary plantings may be mowed and baled or simply mowed to complement the use of the site.

Millet, rye, and wheat may be mowed, but no lower than 6'' (closer mowing may damage the stand).

Ryegrass is tolerant of most mowing regimes and may be mowed often and as close as 4'' to 6'' if this regime is started before it attains tall growth (over 8'').

Bermuda grass is tolerant of most mowing regimes and can be mowed often and close, if so desired, during its growing season.

References

Volume 1

Chapter 2		
Vegetation for Erosion and Sediment Control		
Chapter 4		
Land Grading (LG)	4-16	
Topsoiling (TSG)	4-20	
Mulching (MU)	4-48	
Permanent Seeding (PS)	4-53	

Appendices Volume

- -

Appendix G	
MDOT Vegetation Schedule	G-1