Green Roofs

Practice Description

There are two primary strategies for constructing green roofs (vegetated roof covers and roof gardens): to detain rainfall and to promote evapotranspiration of runoff. Some innovative projects even capture larger quantities of water for management with strategies such as roof ponding areas and cisterns. The vegetated roof blankets the roof area with a layer of living vegetation. These are particularly effective when applied to extensive roofs, such as those commonly used on commercial, multifamily, and institutional buildings. However, they can be applied to virtually any building, including single-family residences. Vegetated roof covers are an effective means of retarding runoff from roof surfaces. Initially during a rainfall event, nearly all precipitation striking the foliage is intercepted. As rain continues, water percolates into and begins to saturate the growth media and root zone of the cover. Significant quantities of water do not begin to drain from the roof until the field capacity of the medium is filled. For small rainfall events, little runoff occurs and most of the precipitation eventually returns to the atmosphere.

Roof gardens (which are also called "intensive green roofs") are landscaped environments that may include planters and potted shrubs and trees. Roof gardens can be custom-made naturalized areas, designed for outdoor recreation, and perched above congested city streets. Because of the special requirements for access, structural support, and drainage, roof gardens are found most frequently in new construction. The services of a professional engineer are required to evaluate the structural and drainage constraints associated with roof garden design. For larger storms, both types of green roofs can delay and slow the peak runoff significantly.

Planning Considerations

Green roofs are useful for a wide range of construction types. They provide very effective stormwater management for small- to mid-size events. By employing a green roof, developers can often conserve space on-site that would otherwise be required for detention or retention facilities. Experts believe this strategy may even extend the life expectancies of roofs, primarily by shielding from ultraviolet light (UV and temperature extremes. It reduces heat island effects caused by impervious surfaces, and can even bring down heating and cooling costs in the building. It adds aesthetic value to residential and commercial property; provides attractive textures and colors; and creates habitat for birds and insects. There are some disadvantages to this BMP, however. It often requires additional structural strengthening to hold the weight of the structure. Although roof gardens require only normal garden maintenance, the location may make it more difficult to inspect and correct problems. The vegetated roof cover style of green roof cannot be walked on, although a roof garden can handle foot traffic. Buildings that employ rooftop detention strategies may experience leaks. These are also among the most expensive practices per square foot of treated area.

Design Criteria

When preparing a design for a green roof, whether it is a vegetated roof or a roof garden, there are several requirements that must be met. The project must begin with a vegetation plan prepared by a horticulturalist versed in green roofs. The design and implementation will also require the participation of a structural engineer to verify that the roof structure and structure strength are adequate to accommodate these BMPs. The design must include access to the roof for regular inspection and maintenance. If roof slopes are greater than 20 degrees, support systems must be installed to avoid slippage of the growing medium and plants. Specific design criteria for these two primary types of green roofs are detailed below.

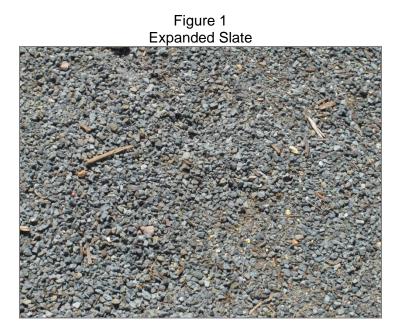
Vegetated Roof Covers

Because of recent advances in synthetic drainage materials, vegetated roof covers are now feasible on most conventional flat and gently sloping roofs. A lightweight, efficient drainage layer is placed between the growth medium and the impermeable membrane protecting the roof surface. This layer rapidly conveys water off the roof surface and prevents it from ponding. Vegetated roof covers also serve to protect roof materials and prolong their life, primarily by shielding from UV and temperature extremes. European data show that green roofs can double the life span of a roof.

Although vegetative roof covers are most effective during the growing season, they are also beneficial during the winter months if the vegetative matter from the dead or dormant plants is left in place and intact.

The emphasis of the design should be to promote rapid roof drainage and minimize the weight of the system. It is advisable to obtain the services of specialized installers because of the many factors that may influence the design.

Waterproof Roof Liner


In some instances, the impermeable lining can be the watertight tar surface, which is conventional in flat-roof construction. However, where added protection is desired, a layer of plastic or a rubber membrane can be installed immediately beneath the drainage net or sheet drain.

Drainage Net or Sheet Drain

The drainage net or sheet drain is a continuous layer that underlies the entire cover system. A variety of lightweight, high-performance, drainage products function well in this environment. The product selected should be capable of conveying the discharge associated with the design storm without ponding water on top of the roof cover. The drainage layer must have a good hydraulic connection to the roof gutters, drains, and downspouts. To prevent the growth medium from clogging the drainage layer and to prevent roots from penetrating the roof surface, a geotextile should be installed immediately over the drainage net or sheet drain. Some products have the geotextile bonded to the upper surface of the drainage material. A root retardant (such as copper sulfate) is typically included in this geotextile.

Lightweight Growth Medium

The depth of the growth medium should be as small as the cover vegetation will allow, which is typically 3 to 6 inches. Low-density substrate materials with good waterretention capacity (e.g., mixtures containing expanded slate, expanded shale, expanded clay, and terra cotta) should be specified. Media appropriate for this application will retain 40 to 60 percent water by weight and have bulk dry densities between 35 and 50 lb/ft³. The makeup of the media will vary depending on the types of plants used, but an example media makeup would be 55% expanded slate, 30% root zone sand, and 15% compost. Care should be taken when specifying compost because it will break down over time, and the depth of the media will therefore decrease. A photograph of expanded slate is provided as Figure 1. Earth and topsoil are too heavy for most applications, as well as being too wet for succulent and other recommended vegetation, and too dry for grasses.

Vegetation

A limited number of plants can thrive in the roof environment where periodic rainfall alternates with periods that are hot and dry. Effective plant species must tolerate mildly acidic conditions and poor soil; prefer very well-drained conditions and full sun; tolerate dry soil; and be vigorous colonizers. It should also be noted that conditions can be much wetter for longer periods near a gutter or drain and drier near the peaks. Succulents have shown to be very successful in vegetative roof covers, and are preferred to grasses. Both annual and perennial plants can be used. Vegetative roof covers may need provisions for occasional watering (e.g., conventional lawn sprinklers) during extended dry periods. A vegetation plan prepared by a horticulturalist versed in green roof vegetation is required.

Hydraulics

Vegetative roof covers influence runoff in two ways: intercepting rainfall during the early part of a storm, and limiting the release rate. Hydrologic properties are specific to the growth medium. If information is not provided by the supplier, prospective media should be laboratory-tested to establish:

- Porosity
- Moisture content at field capacity
- Moisture content at the wilting point
- Saturated hydraulic conductivity

Rainfall retention properties are related to field capacity and wilting point. Appropriate media for this application should be capable of retaining water at the rate of 40 percent by weight, or greater. The medium must be uniformly screened and blended to achieve its rainfall retention potential. During the early phases of a storm, the media and root systems of the cover intercept and retain most of the rainfall, up to the retention capacity. For instance, a 3-inch cover with 40 percent retention potential effectively controls the first 1.2 inch of rainfall. Although some water percolates through the cover during this period, this quantity is generally negligible compared with the direct runoff rate without the cover in place. Capture rates are dependent on rainfall intensity, antecedent rainfall, time of year, evapotranspiration, and roof pitch. Green roofs on pitches steeper than 1:12 do not function as well as for water quality and quantity control. Vegetated roof covers should be kept on slopes of 8 percent or less, if they are being used to mitigate water quality or quantity.

Once the field capacity of the cover is attained, water drains freely through the medium at a rate that is approximately equal to the saturated hydraulic conductivity of the medium. The maximum release rate from the roof can be controlled by selecting the appropriate medium. The medium is a mechanism for "buffering" or attenuating the peak runoff rates from roofed areas. The attenuation can be important even for large storms. By using specific information about the hydraulic properties of the cover medium, the effect of the roof cover system on the runoff hydrograph can be approximated with numerical modeling techniques. As appropriate, the predicted hydrographs can be added into sitewide runoff models to evaluate the effect of the vegetative roof covers on site runoff. The hydraulic analysis of roof covers requires the services of a properly licensed design professional experienced in this type of drainage design. Drainage nets or sheet drains with transmissivities of 15 gallons per minute per foot or higher are recommended. When assessing a drainage layer design, designers should evaluate the roof topography to establish the longest travel distances to a roof gutter, drain, or downspout. If flow converges near drains and gutters, the design unit flow rate should be increased accordingly. The drainage layer should be able to convey the design unit flow rate at the roof grade without water ponding on top of the cover medium.

For storms larger than the design storm, direct roof runoff will occur. The design flow rates should be based on the largest runoff peak attenuation considered in the design of the vegetated roof cover.

Weight Considerations

Roof designs are dictated by state and local building codes and standards. They must account for maximum design loads contributed by dead loads, live loads, and snow or water accumulation. The design of a vegetative roof cover can alter the dead loads to the system, and it should therefore be closely coordinated with the structural design of the building. Dead loads for vegetated roof covers include the planting medium, vegetation, drainage system, and water in the pore space. However, the additional weight is partly offset by the removal of the gravel ballast.

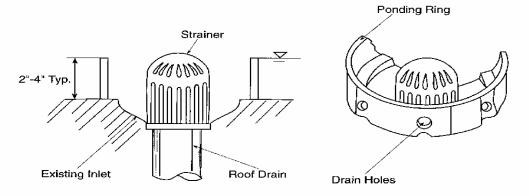
By using appropriate materials, the total weight of fully saturated vegetated roof covers can readily be maintained below 35 pounds per square foot (psf). It is also possible that the minimum weight design focus for the vegetated roof cover might be too light to satisfy the ballast requirements for flat tar roofs. As required, deepening the medium can increase the weight of the cover system.

Roof Gardens

Roof gardens generally are designed to achieve specific architectural objectives. The load and hydraulic requirements for roof gardens vary according to the intended use of the space. Intensive roof gardens typically include design elements such as planters filled with topsoil, decorative gravel or stone, and containers for trees and shrubs. Complete designs also may detain runoff ponding in the form of water gardens or storage in gravel beds. A wide range of hydrologic principles may be used to achieve stormwatermanagement objectives, including runoff peak attenuation and runoff volume control.

Effective designs ensure that all direct rainfall is cycled through one or more devices before being discharged to downspouts as runoff. For instance, rainfall collected on a raised tile patio can be directed to a medium-filled planter where some water is retained in the root zone and some is detained and gradually discharged through an overflow to the downspout.

Roof Ponding Areas


Roof ponding measures can be designed for rainfall events of all sizes. However, the structural loads associated with the impounded runoff may impose limitations on their use. This is especially true if ponding areas must also accommodate runoff derived from adjacent roof surfaces.

Flat roofs can be converted to ponding areas by restricting the flow to downspouts. Figure 2 shows a simple device that can be used to modify downspout inlets. The device features drain holes that retard outflow as the water level rises and a weir ring that allows free drainage once the design ponding level is attained. It is essential that a structural engineer verify that the existing roof can carry this extra weight. Some form of

emergency overflow is advisable and can be as simple as a free overflow through a notch in the roof parapet wall.

Figure 2

Modification of Downspout Inlet (Adapted from Tourbier, 1974)

The inputs needed for analysis of roof ponding systems are similar to those needed for design of dry ponds and other runoff peak attenuation facilities. These are:

- Input hydrograph
- Depth-storage function
- Depth-discharge function

Because the roof is impermeable, the runoff hydrograph is simply the rainfall distribution for the design storm multiplied by the area of the roof.

The depth to storage relationship can be computed from the topography of the roof. For perfectly flat roofs, the storage volume of a ponding level is equal to the roof area times the ponding level.

The depth-discharge relationship is unique to the outlet device used. For simple ponding rings, the following discharge equation can be used:

O = 3.141 CD(d - H)3/2

where:

O = outflow rate (cfs)

- C = discharge coefficient (typically 3.0 but may vary depending on the shape the flow device)
- D = diameter of the ring (ft)
- d = depth of ponding (ft)
- H = height of the ring (ft)

With this information, the attenuation effectiveness of the roof ponding system can be predicted by using the Modified Puls or other storage-routing procedure. The performance of the ponding area can be adjusted by changing the height or diameter of the ponding ring.

Cisterns

Cisterns, or rainbarrels, are a method of collecting and storing rainwater for future use. Uses include irrigation, vehicle washing, toilet flushing, and laundry operation. Cisterns are effective for reducing runoff if they are used correctly. Cisterns must be designed to capture an appropriate volume of water that will be re-used onsite on a regular basis. Cisterns that are not used regularly will remain full, not collect rainfall from future storms, and not reduce runoff. Cistern pumps can be included in a design where an increase in water pressure is needed. Pumps should be designed to accommodate the necessary pressure and flow for the system.

Construction and Installation

The main construction guideline is to engage professionals who are experienced with rooftop runoff management BMP installation. Preferably, the same team can undertake all phases of the project from waterproofing to planting to ensure continuity from the design to construction process.

Additional Roof Loading

Additional loading is one of the main factors controlling the feasibility and cost of a rooftop runoff management BMP. New extensive green roofs can be accommodated in building design for a minor additional cost. Rooftop runoff management BMPs on an existing building need to consider the bearing capacity of the structure. It is also possible to use roof areas where point loading can be increased over columns or along a bearing wall, to allow areas for deeper growing medium and larger plants. A structural engineer must be consulted to verify roof and structure strength.

Access to the Roof

Access to the roof is required for inspection and maintenance. For example, materials need to be carried to the roof for soil and plant replacements. Suitable exterior or interior access or elevator stops need to be provided to allow this access. For 1- to 3-story structures, blower trucks or shingle lifts may be used.

Waterproof Membrane

A waterproof membrane is an essential component of a rooftop runoff management BMP. It is recommended that a membrane be installed at the same time the rooftop runoff management BMP is deployed. In addition, good drainage must be provided to prevent extended contact with water and reduce the possibility for leaks and for plant mortality due to drowning or rotting. Roof appurtenances such as parapets, skylights, mechanical systems, and vents should be well protected with a gravel skirt, and when necessary, weep drains.

If the waterproof membrane contains organic material (e.g., bitumen) plant roots may penetrate it. Also, the chemical composition of the membrane should be compatible with the surfaces with which it will be in contact. Membranes developed specifically for rooftop runoff management BMPs contain a root-deterring chemical or metal foil at the seams to prevent root damage (Peck and Kuhn, 2004).

Horizontal Strapping

On a roof slope greater than 20 degrees, horizontal strapping or other support systems must be installed to avoid slippage and slumping of the growing medium and plants.

Timing of Roof Planting

The timing of planting depends on the local climate and season. Planting in the summer may require additional irrigation. Fall planting depends on the availability of plants and whether there is sufficient time to allow for the plants to become established before late winter. Mid-spring planting (February–April) is recommended for much of Mississippi.

Common Problems

Consult with qualified design professional if any of the following occur:

- Weeds are present
- Vegetation is dead or diseased
- The structure is clogged
- The structure is damaged
- Clogging has occurred
- Other damage has occurred

Maintenance

Two to three yearly inspections are recommended to check for weeds and damage. After installation, weekly visits may be needed to ascertain the need for irrigation.

Both regular plant maintenance and maintenance of the waterproofing membrane are required. All rooftop runoff management measures must be maintained periodically. Furthermore, the vegetative measures require routine care and maintenance typical of any planted area. The maintenance includes attention to plant nutritional needs, irrigation as required during dry periods, and occasional weeding. The cost of maintenance can be significantly reduced by judiciously selecting hardy plants that will out-compete weeds. In general, fertilizers must be applied periodically. Fertilizing usually is not a problem on flat or gently sloping roofs where access is unimpeded and fertilizers can be uniformly broadcast. However, fertilization is not recommended if the roof is to be used for water quality improvement. Treading on the cover system should not damage properly designed vegetated roof covers. Maintenance contracts for routine care of the vegetative cover frequently can be negotiated with the installer.

Retrofits of existing roofs must incorporate easy access to gutters, drains, spouts, and other components of the roof drainage system. Foreign matter, including leaves and litter, should be removed promptly.