
Catch Basin Inserts

Practice Description

Catch basins, also known as storm drain inlets and curb inlets, are inlets to the storm drain system. They typically include a grate or curb inlet and a sump to capture sediment, debris, and pollutants. Catch basins are used in combined sewer overflow watersheds to capture floatables and settle some solids, and they act as pretreatment for other treatment practices by capturing large sediments. The effectiveness of catch basins, that is, their ability to remove sediments and other pollutants, depends on their design (e.g., the size of the sump) and on maintenance procedures to regularly remove accumulated sediments from the sump.

Inserts designed to remove oil and grease, trash, debris, and sediment can improve the efficiency of catch basins. Some inserts are designed to drop directly into existing catch basins, while others may require retrofit construction.

Planning Considerations

Though they are used in drainage systems throughout the United States, many catch basins are not ideally designed for sediment and pollutant capture. Catch basins are ideally used as pretreatment to another stormwater-management practice. Retrofitting existing catch basins may substantially improve their performance. A simple retrofit option is to ensure that all catch basins have a hooded outlet to prevent floatable materials, such as trash and debris, from entering the storm drain system. Catch basin inserts for both new development and retrofits at existing sites may be preferred when available land is limited, as in urbanized areas.

Design Criteria

The performance of catch basins is related to the volume in the sump (i.e., the storage in the catch basin below the outlet). Lager et al. (1997) described an "optimal" catch basin sizing criterion, which relates all catch basin dimensions to the diameter of the outlet pipe (D):

- The diameter of the catch basin should be equal to 4D.
- The sump depth should be at least 4D. This depth should be increased if cleaning is infrequent or if the area draining to the catch basin has high sediment loads.
- The top of the outlet pipe should be 1.5D from the bottom of the inlet to the catch basin.

Catch basins can also be sized to accommodate the volume of sediment that enters the system. Pitt et al., (1997) proposed a sizing criterion based on the concentration of sediment in stormwater runoff. The catch basin is sized, with a factor of safety, to accommodate the annual sediment load in the catch basin sump. This method is preferable where high sediment loads are anticipated, and where the optimal design described above is suspected to provide little treatment.

The basic design should also incorporate a hooded outlet to prevent floatable materials and trash from entering the storm drain system. Adding a screen to the top of the catch basin would not likely improve the performance of catch basins for pollutant removal, but it would help capture trash entering the catch basin (Pitt et al., 1997).

Several varieties of catch basin inserts exist for filtering runoff. One insert option consists of a series of trays, with the top tray serving as an initial sediment trap, and the underlying trays composed of media filters. Another option uses filter fabric to remove pollutants from stormwater runoff. Yet another option is a plastic box that fits directly into the catch basin. The box construction is the filtering medium. Hydrocarbons are removed as the stormwater passes through the box, while trash, rubbish, and sediment remain in the box itself as stormwater exits. These devices have a very small volume, compared to the volume of the catch basin sump, and would typically require very frequent sediment removal. Bench test studies found that a variety of options showed little removal of total suspended solids, partially due to scouring from relatively small (6-month) storm events (ICBIC, 1995).

One design adaptation of the standard catch basin is to incorporate infiltration through the catch basin bottom. Two challenges are associated with this design. The first is potential groundwater impacts, and the second is potential clogging, preventing infiltration. Infiltrating catch basins should not be used in commercial or industrial areas, because of possible groundwater contamination. While it is difficult to prevent clogging at the bottom of the catch basin, it might be possible to incorporate some pretreatment into the design.

Drainage Area

The total maximum drainage area should be 5,000 square feet (+5%) per unit for new development projects and 7,000 feet per unit for redevelopment projects.

Accessibility

The insert should be located so that is it readily accessible for maintenance requirements and so that it will not be blocked by parked vehicles.

Common Problems

Even ideally designed catch basins cannot remove pollutants as well as structural stormwater-management practices, such as wet ponds, sand filters, and stormwater wetlands.

Unless frequently maintained, catch basins can become a source of pollutants through resuspension.

Catch basins cannot effectively remove soluble pollutants or fine particles.

Maintenance

Typical maintenance of catch basins includes trash removal (if a screen or other debriscapturing device is used) and removal of sediment using a vacuum truck. Operators need to be properly trained in catch basin maintenance. Maintenance should include keeping a log of the amount of sediment collected and the date of removal. Some cities have incorporated the use of geographic information systems to track sediment collection and to optimize future catch basin cleaning efforts.

One study (Pitt, 1985) concluded that catch basins can capture sediments up to approximately 60 percent of the sump volume. When sediment fills greater than 60 percent of their volume, catch basins reach steady state. Storm flows can then resuspend sediments trapped in the catch basin, and will bypass treatment. Frequent cleanout can retain the volume in the catch basin sump available for treatment of stormwater flows.

At a minimum, catch basins should be cleaned once or twice per year (Aronson et al., 1993). In some regions, it may be difficult to find environmentally acceptable disposal methods for collected sediments. The sediments may not always be land-filled, land-applied, or introduced into the sanitary sewer system due to hazardous waste, pretreatment, or groundwater regulations. This is particularly true when catch basins drain runoff from hot-spot areas.