

VENTURE OIL & GAS, INC.

OIL AND GAS EXPLORATION, DEVELOPMENT & OPERATIONS

140 MAYFAIR ROAD, SUITE 900 HATTIESBURG, MS 39402

PHONE: 601-428-7725 Fax: 601-450-4448

October 19, 2023

Ms. Krystal Rudolph, P.E. Chief Environmental Permits Division Mississippi Department of Environmental Quality PO Box 2261 Jackson, MS 39225-2261

Dear Ms. Rudolph:

Re:

Venture Oil & Gas Inc. Burnham 18-13 No. 3 Tank Battery

Oil Production General Permit NOI

Venture Oil & Gas Inc. is submitting the enclosed NOI for coverage under the Oil Production General Permit for the proposed Burnham 18-13 No. 1 facility in Smith County, MS. Also enclosed is a copy of the public notice which is to be published October 25, 2023.

If you have any questions, please feel free to contact me at (601) 428-7725.

Sincerely,

Dan Watts HSE Director

Oil Production General Permit Public Notice Mississippi Environmental Quality Permit Board P. O. Box 2261 Jackson, Mississippi 39225 Telephone No. (601) 961-5171

Public Notice Start Date: 10/25/2023

Venture Oil & Gas Burnham 18-13 No. 1 facility located at latitude 32.09365, longitude -89.72782, in Smith County approximately 3 miles ENE of Pucket, Mississippi, (601) 518-0622, has applied to the Mississippi Department of Environmental Quality (MDEQ) for coverage under MDEQ's Oil Production General Permit to construct and operate an oil production facility.

The Oil Production General Permit has been developed to ensure compliance with all State and Federal regulations. Facilities granted coverage under this permit and adhering to the conditions contained therein should operate within State and Federal environmental laws and standards concerning the operation of air emissions equipment.

The proposed project consists of construction and/or operation of an oil and gas production site including well, separators, oil and water storage tanks, engine for a well pump, and a flare to control gas emissions. Venture is requesting a federally enforceable permit requirement that the storage tank emissions be routed to the flare at all times the facility is in operation. The facility will operate control(s) such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. This project will result in new sources of potential emissions of regulated air pollutants. However, emissions will be below the Prevention of Significant Deterioration significance levels as specified in the Mississippi Regulations for the Prevention of Significant Deterioration of Air Quality, 11 Miss. Admin. Code Pt. 2, Ch. 5., and in 40 CFR Part 52.21. Potential emissions will also be below the Air Title V Major Source thresholds as specified in 11 Miss. Admin. Code Pt. 2, Ch. 6. and in 40 CFR Part 70.

Persons wishing to comment upon or object to the proposed request are invited to submit comments in writing to the **Air 1 Branch Chief, Environmental Permits Division** at the Permit Board's address shown above no later than 30-days from the date of publication of this notice. All comments received or postmarked by this date will be considered in the determination regarding the coverage approval. After receipt of public comments and thorough consideration of all comments, MDEQ will formulate its recommendations regarding coverage approval.

Additional details about the proposed project are available by writing or calling the **Air 1 Branch Chief, Environmental Permits Division** at the above Permit Board address and telephone number and on the MDEQ's website at: https://www.mdeq.ms.gov/ensearch/recently-received-general-permit-noi/. This information is also available for review at the following locations during normal business hours:

Mississippi Department of Environmental Quality Office of Pollution Control 515 East Amite Street, Jackson, MS 39201 (601) 961-5171

> Floyd J. Robinson Memorial Library 150 Main Street Raleigh, MS 39153

Please bring the foregoing to the attention of persons whom you know will be interested.

OIL PRODUCTION GENERAL PERMIT NOTICE OF INTENT

VENTURE OIL & GAS, INC Burnham 18-13 No.3 Facility Smith County, Mississippi

Submittal Date: October 2023

PREPARED BY:

FC&E ENGINEERING, LLC

917 Marquette Road Brandon, Mississippi 39042 (601) 824-1860

EXECUTIVE SUMMARY

Venture Oil & Gas Inc. (Venture) plans to drill a new well for the purposes of oil production. The well (Burnham 18-13 No. 3) will be located in Section 18, Township 3N, Range 6E, in Smith County, Mississippi. The proposed site will include a conventional tank battery, flare, and associated well pad activities. Based on engineering estimates, the maximum production rates are estimated to be up to 350 thousand cubic feet (MCF) of gas produced per day and 350 barrels (bbl) of oil produced per day, along with 10 bbl/day of produced water.

A pipeline outlet does not exist for the gas, therefore, Venture will flare all gas streams, including gas off of the separators, the storage tank emissions and the gas produced by the heater treater. Venture will collect produced water into a 400-bbl water tank prior to offsite transport to a disposal well. Oil will be collected into three (3) 400-bbl oil storage tanks and one(1) 500 bbl oil storage tank before being trucked to market. Venture is requesting a federally enforceable requirement for flaring of tank emissions. Emissions associated with truck loading will be vented to the atmosphere. Venture may also operate various small chemical storage vessels, including totes and drums, which are typically associated with well pad activities. Venture intends to install and operate a natural gas fueled engine if/when a pumping unit is required for production from the well. The engine will be classified as "existing" under 40 CFR 63, Subpart ZZZZ.

Consequently, Venture is submitting the attached Notice of Intent (NOI) and associated information for issuance of coverage under the Oil Production General Permit. Based on the facility's potential to emit, the facility's uncontrolled potential emissions of Volatile Organic Compounds (VOC), n-hexane, and total HAPs exceed the threshold limits to be classified as a True Minor Source. Therefore, Venture proposes to restrict facility operations such that the flare is operated at all times during gas venting. Combustion of produced gas from the well, process gas from the heater treater, and gas off of the oil and water storage tanks will ensure VOC emissions from the facility do not exceed the Air Title V Major Source threshold of 100 tons per year and the General permit limit of 95 tons per year. Venture will monitor the volume of gas flared, except that the volume of gas from the tanks will be calculated using an approved methodology. Venture will calculate corresponding monthly VOC emissions due to flaring of gas from all sources. A flow meter will be used to measure monthly flow of produced gas to the flare. Monthly oil production records and E&P TANKS software will be utilized to calculate emissions from the storage tanks to the flare. Emissions calculations will be maintained on a monthly and rolling, consecutive 12-month basis to ensure compliance with permitted emissions thresholds.

Also included with the NOI are associated maps and figures. Detailed air emissions calculations are provided in Appendix A, and pertinent backup documentation is provided in Appendix B.

NOTICE OF INTENT (NOI) FORMS

AI: 97947 Rec'd 10/24/2023 MSOPGP2500-00100

Facility (Agency Interest) Information	Section OPGP - A
1. Name, Address, and Location of Facility	
A. Owner/Company Name: Venture Oil &	& Gas Inc.
B. Facility Name (if different than A. above): V	enture Barnham 18-13 No. 3 Facility
C. Facility Air Permit/Coverage No. (if known):	
D. Agency Interest No. (if known):	
E. Physical Address 1. Street Address: Field Road off of Oil Fiel	3. State: MS 5. Zip Code: 39042 7. Fax No.: Yes No. Please complete Item 10.
F. Mailing Address 1. Street Address or P.O. Box: 207 South 13 2. City: Laurel 4. Zip Code: 39440	th Avenue 3. State: MS
2. Method of Collection (check one):	Other: Well head
☐ GPS Specify coordinate system ☐ Map Interpolation (Google Earth, etc.)	c.) Other:
, , , , , , , , , , , , , , , , , , , ,	2/05/37.1394
	eg89/43/40.1514
5. Elevation (<i>feet</i>): 249 H. SIC Code: 1311	
2. Name and Address of Facility Contact	
2. Name and Address of Facility Contact	
A. Name: Dan Watts	Title: EHS Director
	road, Suite 900
2. City: Hattiesburg	3. State: MS
4. Zip Code: <u>39402</u>	5. Fax No.: <u>601-450-4448</u>
6. Telephone No.: 601-428-2257	
7. Email: dwatts@venture-inc.com	

	cy Interest) Information			Section OPGP - A
_ • • • • • • • • • • • • • • • • • • •	Address of Air Contact (Facility Con	tact)
A 31-			Trial	
A. Name:			Title:	
B. Mailing A	Address			
_	dress or P.O. Box:			
2. City:			3. State:	
4. Zip Code:			5. Fax No.:	
6. Telephone				
7. Email:				
4 Name and 4	ddwar of Damanikla	Official for the E	:1:4	
	Address of Responsible			nin. Code Pt.2, R. 2.1.C(24).
The Torm must	oc signed by a Responsible	ojjietai as aejinea i	,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m. couc 1 1.2, 10. 2.1.0(2 1).
A. Name:	Adam Barham		Title:	VP-Operations
B. Mailing A				
		0 Mayfair road, Su		
•	Hattiesburg		3. State:	MS
4. Zip Code:			5. Fax No.:	601-450-4448
6. Telephone				
7. Email:	abarham@venture-inc.com	<u>n</u>		
C Iatha man	aan ahaya a dulu aythariga.	d	d not a aaman	ata afficaro
C. Is the per	son above a duly authorized Yes V No	-	u not a corpora	ate officer?
If was beau			auhmittad ta N	ADEO3
II yes, nas w	ritten notification of such a Yes \text{No.}		_	
	res 🗀 No	·	_ Kequest for	authorization is attached
5. Type of Oil	Production Notice of In	tent (<i>Check all t</i>	hat apply)	
্য	Initial Coverage	П	Do Coverso	a fan anistina Carrana
	initial Coverage		Ke-Coverage	e for existing Coverage
	Modification with Public	Notice \Box	Modification	n without Public Notice
	Update Compliance Plan			
	F			

Facility (Agency Interest) Informati	io	io	į
--------------------------------------	----	----	---

Facility (Agency Interest) Information	Section OPGP - A
6. Equipment List (Check all that apply)	
Complete supporting emission calculations must be included for each potential	al emission unit selected below
☑ Heater Treater. Include a completed Section OPGP-C Form for each u	nit.
☑ Condensation Storage Vessel. Include a completed Section OPGP-E F	orm for each unit.
☑ Water Storage Vessel. Include a completed Section OPGP-E Form for	each unit.
☑ Internal Combustion Engine. Include a completed Section OPGP-D Fo	orm for each unit.
✓ Flare. Include a completed Section OPGP-F Form for each unit.	
✓ Oil Truck Loading (Section OPGP-B Form)	
☑ Component Fugitive Emissions (Section OPGP-B Form)	
Other:	
	, , ,

7. Process/Product Details

Maximum Anticipated Well(s) Production for Faciltiy:

Produced Material	Throughput	Units
Gas	0.35	MMCF/day
Oil	350	barrels/day
Water	10	barrels/day
Other (Specify)		

Maximum Anticipated Throughput for Principal Product(s) (as applicable):

Produced Material	Throughput	Units
Flared Gas	0.35	MMCF/day
Oil	350	barrels/day
Water	10	barrels/day
Other (Specify)		MMCF/day

8. Zoning

Α.	Is the facility (either existing or proposed) located in accordance with any applicable city and/or
	county zoning ordinances? If no, please explain
	Yes

- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain. No
- C. Is the required USGS quadrangle map or equivalent attached?

$ \sqrt{} $	Yes		No
---------------	-----	--	----

Facility (Agency Interest) Information

10. Address and Location of Facility Records

Section OPGP - A

9. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

Physical Address				
1. Street Address:	140 mayfair Road, Suite 900			
2 City: Hattiechu	ra	3 State:	MS	

Facility (Agency Interest) Information	Facility	(Agency	Interest)	Information
--	----------	---------	-----------	-------------

Section OPGP - A

4 4			•		, .	
	 Ω	PT	111	ca	tı	α n
	 _			$\cdot a$		\mathbf{v}

The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

and imprisorment.	
Signature of Responsible Official/DAR	/ <i>U</i> /23/2023 Date
Adam Barham	
Printed Name	Date

Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section B.3 and GHGs in Section B.4. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission	TSP ¹	(PM)	PM	-10¹	PM-	-2.5 ¹	S	02	NO	Ox	C	0	VC	OC _	TR	RS ²	Le	ad	Total	HAPs
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	171.12	749.49	0.00	0.00	0.00	0.00	14.5800	63.86
AA-001a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0001	0.0004
AA-002	0.01	0.05	0.02	0.10	0.02	0.10	0.00	0.00	########	NOx	4.55	19.91	0.04	0.19	0.00	0.00	0.00	0.00	0.0480	0.2103
AA-003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.21	0.00	0.00	0.00	0.00	0.0033	0.0143
AA-004	Routed to	AA-001																		
AA-005	Routed to	AA-001																		
AA-006	Routed to	AA-001																		
AA-006a	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00	0.0009	0.0041
AA-007	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.0043	0.0190
AA-008	Routed to	AA-001																		
AA-009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	117.72	30.64	0.00	0.00	0.00	0.00	5.2676	0.2536
AA-010	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00	0.0009	0.0041
			·																	
Totals	0.01	0.06	0.03	0.14	0.03	0.14	0.00	0.01	#######	0.45	4.63	20.27	288.94	780.59	0.00	0.00	0.00	0.00	19.91	64.37

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H_2S), methyl mercaptan (CH_4S), dimethyl sulfide (C_2H_6S), and dimethyl disulfide ($C_2H_6S_2$).

Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

0.15 0 0.00 0 0.05 0 0.00 0 AA-001 AA-001 0.00 0 0.00 0	0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	lb/hr ton/yr 0.14 0.61 0.00	0.14 0. 0.00 0. 0.02 0.	/yr lb/hr 61 0.000 00 0.000 104 0.001 00 0.00		1.28 0.00 2.70 0.00	5.60 0.02 11.83	1b/hr 6.96 0.00 4.55 0.00	30.48 0.02 19.91	3.42 0.00 0.04	14.99 0.00 0.19	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
0.00 0 0.05 0 0.00 0 AA-001 AA-001 0.00 0 0.00 0	0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.02 0.104 0.00 0.00	0.00 0. 0.02 0.	00 0.000 104 0.00 1	0.00	0.00 2.70	0.02 11.83	0.00 4.55	0.02 19.91	0.00 0.04	0.00 0.19	0.00	0.00	0.00	0.00
0.05 0 0.00 0 AA-001 AA-001 0.00 0 0.00 0	0.01 0.05 0.00 0.00 ated to AA-001 ated to AA-001 ated to AA-001 0.00 0.00	0.02 0.104 0.00 0.00	0.02 0.	0.001	0.004	2.70	11.83	4.55	19.91	0.04	0.19	0.00			
0.00 0 AA-001 AA-001 AA-001 0.00 0	0.00 0.00 uted to AA-001 uted to AA-001 uted to AA-001 0.00 0.00	0.00 0.00			+								0.00	0.00	0.00
AA-001 AA-001 AA-001 0.00 0	ated to AA-001 ated to AA-001 ated to AA-001 0.00 0.00		0.00 0.	00 0.00	0.00	0.00	0.00	0.00	0.00						
AA-001 AA-001 0.00 0	ated to AA-001 ated to AA-001 0.00 0.00	0.00 0.02					0.00	0.00	0.00	0.06	0.28	0.00	0.00	0.00	0.00
AA-001 0.00 0 0.00 0	uted to AA-001	0.00 0.02													
0.00 0 0.00 0	0.00	0.00 0.02													
0.00 0		0.00 0.02													
	00 000	0.00 0.02	0.00 0.	02 0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00
4 A-001	.00	0.00 0.00	0.00 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
171-001	ited to AA-001														
0.00 0	0.00	0.00 0.00	0.00 0.	00.00	0.00	0.00	0.00	0.00	0.00	121.23	30.64	0.00	0.00	0.00	0.00
0.00 0	0.00	0.00 0.02	0.00 0.	02 0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00
						l	-								
-+															
					 										
- 					-										
			 		+										
			-	_											
		· -													
	.05 0.21	0.17 0.75	0.17	75 0.00	0.01	4.00	17 99	11 50	08.00	124 77	16.15	0.00	0.00	0.00	0.00
		.21	.21 0.17 0.75	.21 0.17 0.75 0.17 0.	.21 0.17 0.75 0.17 0.75 0.00	.21 0.17 0.75 0.17 0.75 0.00 0.01	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59 95.00	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59 95.00 124.77	.21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59 95.00 124.77 46.15	.21	21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59 95.00 124.77 46.15 0.00 0.00	21 0.17 0.75 0.17 0.75 0.00 0.01 4.08 17.88 11.59 95.00 124.77 46.15 0.00 0.00 0.00

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	Total	HAPs	1,1,2 tetrachlo	2,2 - roethane	1,1,2-trich	loroethane	1,3-bu	tadiene	1,3-dichlo	propropene	acetal	dehyde	acro	olein	ben	zene	carbon te	trachloride
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.3619	1.2772	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	0.0344	0.1506	<0.0001	<0.0001
AA-001a	0.0001	0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
AA-002	0.0396	0.1735	<0.0001	0.0001	<0.0001	0.0001	0.0008	0.0035	<0.0001	0.0001	0.0034	0.0149	0.0032	0.0141	0.0019	0.0085	< 0.0001	0.0001
AA-003	0.0036	0.0143	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	0.0006	0.0027	< 0.0001	< 0.0001
AA-004	Routed to	AA-001				_			., .,									
AA-005	Routed to	AA-001																
AA-006	Routed to	AA-001																
AA-006a	0.0009	0.0041	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
AA-007	0.0043	0.0190	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
AA-008	Routed to	AA-001																
AA-009	5.2676	0.2536	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.5648	0.0670	<0.0001	<0.0001
AA-010	0.00093	0.00409	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001
		-												-			-	
	-							ļ				 				 		├──
					-			<u> </u>										├ ──
		-						<u> </u>										ļ
												<u> </u>						
									L									
				-														
Totals:	5.6791	1.7463	0.0000	0.0001	0.0000	0.0001	0.0008	0.0035	0.0000	0.0001	0.0034	0.0149	0.0032	0.0141	0.6018	0.2288	0.0000	0.0001

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	Total	HAPs	chlorot	enzene	chlore	oform	ethylbe	enzene	ethylene e	libromide	formal	dehyde	metl	nanol	methylen	e chloride	napht	halene
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.1414	1.2772	< 0.0001	<0.0001	<0.0001	<0.0001	0.0014	0.0063	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AA-001a	0.0001	0.0004	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001
AA-002	0.0396	0.1735	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	0.0250	0.1097	0.0037	0.0164	0.0001	0.0002	0.0001	0.0005
AA-003	0.0033	0.0143	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AA-004	Routed to	AA-001															<0.0001	< 0.0001
AA-005	Routed to	AA-001															<0.0001	<0.0001
AA-006	Routed to	AA-001															<0.0001	<0.0001
AA-006a	0.0009	0.0041	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0002	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
AA-007	0.0043	0.0190	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
AA-008	Routed to	AA-001		,													<0.0001	<0.0001
AA-009	5.2676	0.2536	<0.0001	<0.0001	<0.0001	<0.0001	0.0216	0.0026	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AA-010	0.0009	0.0041	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	0.0002	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
					-								• • .					
		_																
																<u> </u>		
												,						
Totals:	5.4582	1.7463	0.0000	0.0001	0.0000	0.0001	0.0230	0.0091	0.0000	0.0001	0.0250	0.1100	0.0037	0.0164	0.0001	0.0002	0.0001	0.0005

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	Total	HAPs	P/	АН	styr	ene	tolu	ene	vinyl c	hloride	xyl	епе	hex	ane	PC	М		
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.1414	1.2772	<0.0001	<0.0001	<0.0001	<0.0001	0.0206	0.0901	< 0.0001	<0.0001	0.0156	0.0685	0.2196	0.9617	<0.0001	<0.0001		
AA-001a	0.0001	0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	0.0004	<0.0001	<0.0001		
AA-002	0.0396	0.1735	0.0002	0.0008	<0.0001	0.0001	0.0007	0.0030	<0.0001	<0.0001	0.0002	0.0010	<0.0001	<0.0001	<0.0001	<0.0001		
AA-003	0.0033	0.0143	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	0.0010	< 0.0001	<0.0001	0.0002	0.0009	0.0040	0.0175	<0.0001	<0.0001		
AA-004	Routed to	AA-001										-						
AA-005	Routed to	AA-001																
AA-006	Routed to	AA-001																
AA-006a	0.0009	0.0041	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	0.0009	0.0039	<0.0001	0.0001		
AA-007	0.0043	0.0190	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001		
AA-008	Routed to	AA-001																
AA-009	<0.0001	0.2536	<0.0001	<0.0001	<0.0001	<0.0001	0.5593	0.0663	<0.0001	<0.0001	0.2946	0.0349	3.8273	0.4540	<0.0001	<0.0001		
AA-010	0.00093	0.00409	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00088	0.00386	<0.0001	0.0001		
												-						
-																		
				ļ														
																		<u> </u>
			-															
Totals:	0.1906	1.7463	0.0002	0.0008	0.0000	0.0001	0.5808	0.1604	0.0000	0.0000	0.3107	0.1054	4.0528	1.4414	0.0000	0.0001		

Section B.4: Greenhouse Gas Emissions

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N₂O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr			Total GHG Mass Basis ton/yr ⁵	Total CO₂e ton/yr ⁶
Emission Point ID	GWPs 1	1	1	298	25	22,800	footnote 4				
AA-001	mass GHG	8807.71	0	0.02	39.35	0	0			8847.08	N/A
AA-001	CO2e	8807.71	0	4.71	983.85	0	0			N/A	9796.27
AA-001a	mass GHG	25.59	0	0.00	0.00	0	0			25.59	N/A
AA-001a	CO2e	25.59	0	0.01	0.01	0	0			N/A	25.62
AA-002	mass GHG	624.23	0	0.00	0.01	0	0			624.24	N/A
AA-002	CO2e	624.23	0	0.35	0.29	0	0			N/A	624.88
	mass GHG				-						
	CO2e										
4 4 002	mass GHG	0.00	0	0.00	0.24	0	0			0.24	N/A
AA-003	CO2e	0.00	0	0.00	5.90	0	0			N/A	5.90
A A 004	mass GHG	0	0	0	0	0	0			0.00	N/A
AA-004	CO2e	0	0	0	0	0	0			N/A	0.00
A A 005	mass GHG	0	0	0	0	0	0			0.00	N/A
AA-005	CO2e	0	0	0	0	0	0			N/A	0.00
A A .00¢	mass GHG	0	0	0	0	0	0			0.00	N/A
AA-006	CO ₂ e	0	0	0	0	0	0			N/A	0.00
4.4.006	mass GHG	255.45	0	0.00	0.00	0	0			255.46	N/A
AA-006a	CO ₂ e	255.45	0	0.14	0.12	0	0			N/A	255.71
4 4 005	mass GHG	0	0	0	0	0	0			0.00	N/A
AA-007	CO ₂ e	0	0	0	0	0	0			N/A	0.00
	mass GHG	0	0	0	0	0	0			0.00	N/A
AA-008	CO ₂ e	0	0	0	0	0	0			N/A	0.00
1.1.005	mass GHG	0.03	0	0	0.18	0	0			0.21	N/A
AA-009	CO ₂ e	0.03	0	0	4.50	0	0			N/A	4.53
	mass GHG	255.45	0	0.00	0.00	0	0			255.46	N/A
AA-010	CO2e	255.45	0	0.14	0.12	0	0			N/A	255.71
FACILITY	mass GHG	9968.47	0	0.02	39.79	0.00	0.00			10008.28	N/A
TOTAL	CO ₂ e	9968.47	0	5.36	994.80	0.00	0.00			N/A	10968.63

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO₂ in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Section B.5: Stack Parameters and Exit Conditions

Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

Emission Point ID	Orientation (H- Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume		ic Position utes/seconds)
rount 1D	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
AA-001	Н	No	40	415	1800	0.50	100	TBD	32/05/37	89/43/40
AA-002	Н	Yes	7	415	TBD	TBD	TBD	TBD	32/05/37	89/43/40
AA-003	N/A-Fugitives	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-004	N/A-Separator	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-005	N/A-Separator	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-006	N/A-Heater Treater	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-006a	TBD	TBD	TBD	415	TBD	TBD	TBD	TBD	32/05/37	89/43/40
AA-007	N/A-Tanks	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-008	N/A-Tanks	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-009	N/A-Truck Loading	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40
AA-010	Line heater	N/A	N/A	415	N/A	N/A	N/A	N/A	32/05/37	89/43/40

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Fuel Burning Equipment – External Combustion **Section OPGP-C** Sources **Emission Point Description** 1. Emission Point Designation (Ref. No.): AA-010 A. B. Equipment Description: Line heater C. Manufacturer: D. Date of Manufacture and No.: 2020 custom E. Maximum Heat Input Nominal Heat 0.25 MMBtu/hr 0.25 MMBtu/hr (higher heating value): Input Capacity: ☐ Line Heater Heater Treater ☐ TEG Burner G. Use: П **Space Heat Process Heat** Other (describe): M H. Heat Mechanism: Direct Indirect I. Burner Type (e.g., forced draft, natural draft, Natural draft etc.): J. Additional Design Controls (e.g., FGR, etc.): none K. Status: П Operating \boxtimes Proposed ☐ Under Construction 2. **Fuel Type** Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat content, hourly usage, and yearly usage. **FUEL TYPE** % SULFUR % ASH **MAXIMUM** MAXIMUM HEAT HOURLY CONTENT YEARLY USAGE USAGE < 0.001 Field gas 1000 < 0.001 245 2.15 MMCF Please list any fuel components that are hazardous air pollutants and the percentage in the fuel:

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Fuel Burning Equipment – External Combustion Section OPGP-C Sources **Emission Point Description** 1. Emission Point Designation (Ref. No.): AA-006A A. B. Equipment Description: One (1) Heater Treater, with a 0.5 MMBTUH burner. C. Manufacturer: Custom D. Date of Manufacture and No.: 2019 F. Nominal Heat E. Maximum Heat Input (higher heating value): 0.5 MMBtu/hr 0.5 MMBtu/hr Input Capacity: ☐ Line Heater Heater Treater TEG Burner G. Use: Process Heat Space Heat Other (describe): Heat Mechanism: \boxtimes Direct Indirect H. Burner Type (e.g., forced draft, natural draft, I. Forced Draft etc.): J. Additional Design Controls (e.g., FGR, etc.): N/A ☐ Under Construction K. Status: Operating \boxtimes Proposed 2. Fuel Type Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat content, hourly usage, and yearly usage. **FUEL TYPE** % SULFUR HEAT % ASH MAXIMUM MAXIMUM CONTENT HOURLY YEARLY USAGE **USAGE** Field Gas 1,000 BTU/CF < 0.001 < 0.001 490 4.3 MMCF Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: No analyzed HAP's have been identified as components in the fuel; however, AP-42, Tables 1.4-2, 1.4-3, and 1.4-4 project certain HAP's to be potentially present in exhaust vapors.

MS Oil Production General Permit NOI, Section OPGP-C, v. 2019.1

Fue Eng		_	quipment -	- Internal C	ombusti	on	Sect	tion OP	GP- D
1.			int Descripti	o n					
	A.	Emission Pe	oint Designation (R	ef. No.): AA-0	02				
	B.	Equipment	Description (includ	ing serial number):	165 HP RIC	E for power of	oil pump		
	C.	Manufactur	er: <u>TBD</u>			Manufacture del No.:	Pre- 200	06	
	E.	Maximum I	leat Input (higher l	neating value):	1.22	MMBtu/hr			
	F.	Rated Powe	r: 165	hp	123	kW			
	G.	Is the engin	e an EPA-certified	engine?	No	Yes or No			
	H.	Use:	⊠ Non-emerge	ncy	☐ Emer	gency			
	I.	Displaceme	nt per cylinder:			10 to <30 Lite	ers	≥ 30 ½	Liters
	J.	Engine Igni	tion Type:	Spark Ignit	ion	☐ Compre	ssion Igni	ition	
	K.	Engine Burn (check all th	-	4-stroke	2-stroke		Rich Bur	rn 🗆	Lean Burn
	L.	Status:		Operating		ed 🗌	Under C	onstruction	
	M.		•	ction, or most receicipated construction		n (for	Pre	- 2006	
2.		l Type							
		plete the follo	wing table, identif HEAT CONTENT	ying each type of fi	el and the am	ount used. Sp MAXIM HOURLY U	UM	s of measure MAXIM YEARLY U	UM
	Gas	Nat. s/propane	1020 BTU/Ft3	0.00004	0.0	1.20 MG		10,47	

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E** Tank Summary **Emission Point Description** Emission Point Designation (Ref. No.): AA-008 (Power Oil Tank No. 1) Product(s) Stored: Oil Operating \boxtimes **Under Construction** Proposed C. Status: D. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2021 **Tank Data** 2. Tank Specifications: 21,000 1. Design capacity gallons 2. True vapor pressure at storage temperature: 11.55 psia @ ambient Maximum true vapor pressure (as defined in 11.55 ambient 3. psia @ §60.111b) 4. Reid vapor pressure at storage temperature: 11.55 psia @ ambient Density of product at storage temperature: 7.2 lb/gal 5. 48 lb/lbmol Molecular weight of product vapor at storage temp. 6. Tank Orientation: 冈 Vertical П Horizontal B. Type of Tank: Fixed Roof **External Floating Roof Internal Floating Roof** Variable Vapor Space Pressure Other: 冈 D. Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. The tanks will be vented to the flare. If a VRU is necessary, it will be installed. Closest City: Jackson, MS Meridian, MS Tupelo, MS Mobile, AL Memphis, TN Baton Rouge, LA New Orleans, LA 冈 Is an E&P or similar report described in Condition 5.4(5) of the Yes \square No

General Permit included for this tank in the Notice of Intent?

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

				renvii i	L .	
Ta	nk	Summary				Section H
3.	Ho	rizontal Fixed Roof Ta	nk			
	A. B. C. D. E. F. G.	Shell Length: Shell Diameter: Working Volume: Maximum Throughput: Is the tank heated? Is the tank underground? Shell Color/Shade:	☐ Ye ☐ Ye			Aluminum/Diffuse
		☐ Gray/Light	☐ Gra	ay/Medium		Red/Primer
	H.	Shell Condition:	Good	☐ Poor		
4.	Ve	rtical Fixed Roof Tank	(
	A.	Dimensions: 1. Shell Height: 2. Shell Diameter: 3. Maximum Liquid Height 4. Average Liquid Height 5. Working Volume: 6. Turnovers per year: 7. Maximum throughput: 8. Is the tank heated?		25 feet 12 feet 24.8 feet 18 feet 21,000 gal 159.1 3,340,554 gal/yr s		
	B.	Shell Characteristics: 1. Shell Color/Shade: White/White Gray/Light		Aluminum/Specular Gray/Medium		Aluminum/Diffuse Red/Primer
		2. Shell Condition:	⊠ Good	l Poor		
	C.	Roof Characteristics: 1. Roof Color/Shade: White/White Gray/Light		Aluminum/Specular Gray/Medium		Aluminum/Diffuse Red/Primer
		2. Roof Condition:	⊠ Good	□ Poor		
		3. Type:	☐ Cone	□ Dome		
		4. Height: <u>0.1</u>	feet			

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL FORM 5 MDEQ QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT **PERMIT**

Ta	nk	Sum	mary	Section H
5.	Int	erna	Floating Roof Tank	
	A.	1. 2. 3.	Characteristics: Diameter: feet Tank Volume: gal Turnovers per year:	
		5. 6.	Maximum Throughput: Number of Columns: Self-Supporting Roof? Yes No Effective Column Diameter: 9"x7" Built-up Column 8" Diameter Pipe	□
			Internal Shell Condition: Light Rust Dense Rust External Shell Color/Shade: Gunite	∐ Unknown Lining num/Diffuse
		10.	☐ Gray/Light ☐ Gray/Medium ☐ Red/Pr External Shell Condition: ☐ Good ☐ Poor	
			Roof Color/Shade: White/White Aluminum/Specular Aluminum/Diff	ffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Primer	
			Roof Condition: Good Poor	
	В.		Seal System: Primary Seal:	Vapor-mounted
		2.	Secondary Seal:	☐ None
	C.		Characteristics: Deck Type:	
		2.	Deck Fitting Category:	
6.	Ex	terna	l Floating Roof Tank	
	A.	1. 2. 3. 4.	Characteristics Diameter: feet Tank Volume: gal Turnovers per year: Maximum Throughput: gal/yr Internal Shell Condition: Light Rust Dense Rust Gunite Linin	ıg

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

	Sun	nma	ry							Section 1
Ex	tern	al Flo	oating Roof	Tank (d	continu	ied)				
A.	Tank 6.	Paint	acteristics (con Color/Shade: White/White	tinued):	Alumin	um/Specul	ar		Aluminum	n/Diffuse
			Gray/Light		Gray/M	ledium			Red/Prime	r
	7.	Paint	Condition:		Good			Poor		
B.	Roof		acteristics Type:	☐ Pont	toon			Doub	ole Deck	
	2.	Roof	Fitting Catego	ry:		□ Тур	oical		☐ Detail	
C.	Tank 1.		truction and Ri Construction:	m-Seal Sys	stem:	☐ We	lded		☐ Rivete	ed
	2.	Prima	ary Seal: Mechanical S	hoe		.iquid-mou	nted		☐ Vapor	-mounted
									•	
D.	3.		ndary Seal None	Shoe-m	nounted		Rim-r	nounte	_	Weather shield
	lluta	nt E	None	Shoe-m	nounted		Rim-r	nounte	_	Weather shield
Po A.	lluta Fixe	nt E	None [g Loss (to				_	Total Emissions
	lluta Fixe	nt En	None				Breathin	ng Los	ed [
	Fixe Pollu	ent End Roof	None				Breathin	ng Los	s (tons/yr)	Total Emissions (tons/yr)*
	Fixe Pollu	nt End Roof	None				Breathin	ng Los	s (tons/yr) 3 0.91	Total Emissions (tons/yr)* 30.96
	Fixe Pollu VOC Hexa Benz	nt End Roof	nissions Emissions:				Breathin	ng Los I W&E 0.143	s (tons/yr) 3 0.91	Total Emissions (tons/yr)* 30.96 2.8191
	Fixe Pollu VOC Hexa Benz	d Roof utant ane zene vibenze	nissions Emissions:				Breathin	ng Los I W&E 0.143 0.035	s (tons/yr) 8 0.91 9 5	Total Emissions (tons/yr)* 30.96 2.8191 0.6979
	Fixe Pollu VOC Hexa Benz Ethy	d Roof utant ane zene vibenze uene	nissions Emissions:				Breathin	ng Los I W&E 0.143 0.035 0.000	s (tons/yr) 8 0.91 9 5	Total Emissions (tons/yr)* 30.96 2.8191 0.6979 0.0102
	Fixe Pollu VOC Hexa Benz Ethy Tolu Xyle	d Roof utant ane zene vlbenze ene	nissions Emissions:				Breathin	ng Los I W&E 0.143 0.035 0.000 0.020	s (tons/yr) 8 0.91 9 5	Total Emissions (tons/yr)* 30.96 2.8191 0.6979 0.0102 0.3890

^{1.} All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the Permit Application Instructions. A list of regulated air pollutants and hazardous air pollutants is provided in the Application Instructions.

^{2.} Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

Ta	nk	Summary Section OPGP-E										
1.	Em	ission Point Description										
	A. B. C. D.	Emission Point Designation (Ref. No.): AA-008 (Oil Storage Tank No. 2) Product(s) Stored: Oil Status: Operating Proposed Under Construction Date of construction, reconstruction, or most recent										
		modification (for existing sources) or date of anticipated construction: 2021										
2.	Ta	nk Data										
	A.	Tank Specifications:										
		1. Design capacity 2. True vapor pressure at storage temperature: 3. Maximum true vapor pressure (as defined in §60.111b) 16,800 gallons 11.55 psia @ ambient °F ambient °F										
		4. Reid vapor pressure at storage temperature: 5. Density of product at storage temperature: 6. Molecular weight of product vapor at storage temp. 11.55 psia @ ambient °F 7.2 lb/gal 1b/lbmol										
	В.	Tank Orientation:										
	C.	Type of Tank:										
		☐ Fixed Roof ☐ External Floating Roof ☐ Internal Floating Roof										
		☐ Pressure ☐ Variable Vapor Space ☐ Other:										
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. The tanks will be vented to the flare. If a VRU is necessary, it will be installed.										
	E.	Closest City: Solution Meridian, MS Tupelo, MS Mobile, AL										
		☐ New Orleans, LA ☐ Memphis, TN ☐ Baton Rouge, LA										
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?										

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E Tank Summary** 3. Horizontal Fixed Roof Tank A. Shell Length: feet Shell Diameter: B. feet Working Volume: gal C. D. Maximum Throughput: gal/yr Is the tank heated? Yes No Is the tank underground? Yes No Shell Color/Shade: Aluminum/Specular ☐ Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer ☐ Good **Shell Condition:** Poor **Vertical Fixed Roof Tank** A. Dimensions: 1. Shell Height: 20 feet 2. Shell Diameter: 12 feet 3. Maximum Liquid Height: 19 feet ~10 4. Average Liquid Height: feet Working Volume: 16,800 5. gal 6. Turnovers per year: 91.25 (est. for each oil storage tank) 7. Maximum throughput: 3.066 MMgal/yr (for entire tank battery) Is the tank heated? Yes ⊠ No Shell Characteristics: B. Shell Color/Shade: ☐ White/White \boxtimes Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer 冈 Poor 2. Shell Condition: Good П C. Roof Characteristics: Roof Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor 3. \boxtimes Type: Cone Dome 4. Height:

Ta	nk	Summary	Section OPGP-E			
5.	5. Internal Floating Roof Tank					
	Α.	Tank Characteristics: 1. Diameter:	☐ Unknown Gunite Lining			
		9. External Shell Color/Shade: White/White Aluminum/Specular	Aluminum/Diffuse			
		☐ Gray/Light ☐ Gray/Medium ☐	Red/Primer			
		10. External Shell Condition: ☐ Good ☐ Pool 11. Roof Color/Shade: ☐ White/White ☐ Aluminum/Specular ☐ Aluminum/Specular	r inum/Diffuse			
		☐ Gray/Light ☐ Gray/Medium ☐ Red/H	Primer			
		12. Roof Condition: Good Poor				
	B.	Rim Seal System: 1. Primary Seal:	☐ Vapor-mounted			
	C.	 Secondary Seal: ☐ Shoe-mounted ☐ Rim-mounted Deck Characteristics: Deck Type: ☐ Bolted ☐ Welded Deck Fitting Category: ☐ Typical ☐ Detail 	I □ None			
6.	F _v					
<u>U.</u>	LX	ternal Floating Roof Tank				
	A.	Tank Characteristics 1. Diameter: 2. Tank Volume: 3. Turnovers per year: 4. Maximum Throughput: 5. Internal Shell Condition: Light Rust Gui	nite Lining			

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E Tank Summary External Floating Roof Tank (continued)** A. Tank Characteristics (continued): Paint Color/Shade: ☐ White/White Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer **Paint Condition:** Good Poor B. Roof Characteristics Double Deck Roof Type: **Pontoon** Detail 2. Roof Fitting Category: **Typical** C. Tank Construction and Rim-Seal System: Tank Construction: ☐ Welded Riveted 2. Primary Seal: ☐ Mechanical Shoe Vapor-mounted Liquid-mounted 3. Secondary Seal \Box None Rim-mounted Weather shield Shoe-mounted 7. Pollutant Emissions **Fixed Roof Emissions:** Pollutant¹ **Total Emissions** Working Loss (tons/yr) Breathing Loss (tons/yr) (tons/yr) VOC / HAP No emissions occur from the tanks since gasses are routed to the flare. Floating Roof Emissions: Pollutant¹ Rim Seal Withdrawal Deck Fitting Deck Seam Landing **Total Emissions** Loss² Loss Loss (tons/yr) Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) 1. All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions. 2. Landing losses should be determined according to the procedures in Organic Liquid Storage Tanks chapter of EPA's

AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

Ta	nk	Summary Section OPGP-E				
1.	Em	Emission Point Description				
	A. Emission Point Designation (Ref. No.): AA-008 (Oil Storage Tank No. 3) B. Product(s) Stored: Oil					
	C. D.	Status:				
2.	Ta	nk Data				
	A.	Tank Specifications: 1. Design capacity 2. True vapor pressure at storage temperature: 3. Maximum true vapor pressure (as defined in \$\frac{11.55}{860.111b}\$) psia @ ambient of \$\frac{0.111b}{3}\$ 4. Reid vapor pressure at storage temperature: 5. Density of product at storage temperature: 6. Molecular weight of product vapor at storage temp. 16,800 gallons 2 ambient of \$\frac{0.11.55}{0.11.55}\$ psia @ ambient of				
	B.	Tank Orientation:				
	C.	Type of Tank:				
		☐ Fixed Roof ☐ External Floating Roof ☐ Internal Floating Roof				
		☐ Pressure ☐ Variable Vapor Space ☐ Other:				
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. The tanks will be vented to the flare. If a VRU is necessary, it will be installed.				
	E.	Closest City: Solution Solution Solution Meridian, MS Solution Tupelo, MS Mobile, AL				
		☐ New Orleans, LA ☐ Memphis, TN ☐ Baton Rouge, LA				
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?				

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E Tank Summary Horizontal Fixed Roof Tank** A. Shell Length: feet Shell Diameter: feet Working Volume: gal gal/yr Maximum Throughput: Is the tank heated? Yes No Is the tank underground? Yes No Shell Color/Shade: Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer Poor Shell Condition: Good **Vertical Fixed Roof Tank** A. Dimensions: 1. Shell Height: 20 feet Shell Diameter: 12 2. feet Maximum Liquid Height: 19 feet 3. Average Liquid Height: ~10 4. feet 5. Working Volume: 16,800 gal Turnovers per year: 91.25 (est. for each oil storage tank) 6. 7. Maximum throughput: 3.066 MMgal/yr (for entire tank battery) No. 8. Is the tank heated? Yes Shell Characteristics: Shell Color/Shade: White/White \boxtimes Aluminum/Specular Aluminum/Diffuse П Red/Primer Gray/Light Gray/Medium 2. **Shell Condition:** \boxtimes Good Poor C. Roof Characteristics: Roof Color/Shade: Aluminum/Diffuse White/White Aluminum/Specular Gray/Light Gray/Medium Red/Primer 冈 2. **Roof Condition:** Good Poor \boxtimes 3. Type: Cone Dome 1 Height:

Tank Summary				Section OPGP-E	
5.					
	Α.	Tank 1. 2. 3. 4. 5. 6. 7.	nk Characteristics: Diameter: Tank Volume: Turnovers per year: Maximum Throughput: Number of Columns: Self-Supporting Roof? Effective Column Diameter: 9"x7" Built-up Column Internal Shell Condition: Light Rust External Shell Color/Shade: White/White Aluminum/Specular	feet gal gal/yr No Diameter Pipe	☐ Unknown Gunite Lining Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium	_	Red/Primer
		10. 11.	External Shell Condition: Good	□ Poor	num/Diffuse
			☐ Gray/Light ☐ Gray/Medium	☐ Red/Pr	imer
		12.	Roof Condition: Good G	Poor	
	B.	Rim 1. 2.	n Seal System: Primary Seal:	Liquid-mounted Rim-mounted	☐ Vapor-mounted ☐ None
	C.	Deck 1.	ck Characteristics: Deck Type:	Welded □ Detail	
	E	town			<u>-</u>
6.	LX		nal Floating Roof Tank		
	Α.	Tank 1. 2. 3. 4. 5.	nk Characteristics Diameter: Tank Volume: Turnovers per year: Maximum Throughput: Internal Shell Condition: Light Rust Dense Rust	feet gal gal/yr Guni	ite Lining

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E** Tank Summary **External Floating Roof Tank (continued)** A. Tank Characteristics (continued): Paint Color/Shade: Aluminum/Specular White/White Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer Paint Condition: Good Poor B. Roof Characteristics Roof Type: **Pontoon** Double Deck 2. Roof Fitting Category: Typical Detail C. Tank Construction and Rim-Seal System: Tank Construction: Welded П Riveted 2. Primary Seal: ☐ Mechanical Shoe Liquid-mounted Vapor-mounted Secondary Seal П ☐ None Shoe-mounted Rim-mounted Weather shield **Pollutant Emissions** A. Fixed Roof Emissions: Pollutant¹ Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) VOC / HAP No emissions occur from the tanks since gasses are routed to the flare. B. Floating Roof Emissions: Pollutant¹ Rim Seal Withdrawal **Deck Fitting** Deck Seam Landing **Total Emissions** Loss² Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/vr) (tons/vr) 1. All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance

with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

^{2.} Landing losses should be determined according to the procedures in Organic Liquid Storage Tanks chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

MINOR SOURCE						
<u>Ta</u>	Tank Summary Section OPGP-E					
1.	. Emission Point Description					
	Α.					
	л.	Emission Point Designation (Ref. No.): AA-008 (Oil Storage Tank No. 4)				
	B.	Product(s) Stored: Oil				
	C.	Status:				
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2021				
2.	Ta	nk Data				
	A.	Tank Specifications:				
		1.Design capacity16,800gallons2.True vapor pressure at storage temperature:11.55psia @ambient°F3.Maximum true vapor pressure (as defined in11.55psia @ambient°F				
		§60.111b) 4. Reid vapor pressure at storage temperature: 11.55 psia @ ambient °F				
		4. Reid vapor pressure at storage temperature: 11.55 psia @ ambient °F 5. Density of product at storage temperature: 7.2 lb/gal				
		6. Molecular weight of product vapor at storage temp. 48 lb/lbmol				
	В.	Tank Orientation:				
	C.	Type of Tank:				
		□ External Floating Roof □ Internal Floating Roof				
		☐ Pressure ☐ Variable Vapor Space ☐ Other:				
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. The tanks will be vented to the flare. If a VRU is necessary, it will be installed.				
	E.	Closest City: Solution Meridian, MS Tupelo, MS Mobile, AL				
		☐ New Orleans, LA ☐ Memphis, TN ☐ Baton Rouge, LA				
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?				

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Section OPGP-E Tank Summary** 3. Horizontal Fixed Roof Tank A. Shell Length: feet Shell Diameter: feet Working Volume: gal gal/yr D. Maximum Throughput: Is the tank heated? Yes No Is the tank underground? Yes No Shell Color/Shade: Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer **Shell Condition:** ☐ Good Poor Vertical Fixed Roof Tank A. Dimensions: Shell Height: 1. 20 feet 2. Shell Diameter: 12 feet 19 3. Maximum Liquid Height: feet 4. Average Liquid Height: ~10 feet 5. Working Volume: 16,800 gal 6. Turnovers per year: 91.25 (est. for each oil storage tank) 7. Maximum throughput: 3.066 MMgal/yr (for entire tank battery) Is the tank heated? Yes **Shell Characteristics:** Shell Color/Shade: White/White \boxtimes Aluminum/Specular Aluminum/Diffuse Gray/Medium П Red/Primer Gray/Light 2. Shell Condition: \boxtimes Good Poor C. Roof Characteristics: Roof Color/Shade: 1. White/White \boxtimes Aluminum/Specular Aluminum/Diffuse Gray/Light Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor 3. Cone 冈 Dome Type: 1 4. Height:

Tank Summary				Section OPGP-E	
5.	Int	erna	l Floating Roof Tank		
	A.		Characteristics: Diameter: Tank Volume: Turnovers per year: Maximum Throughput: Number of Columns: Self-Supporting Roof? Effective Column Diameter: 9"x7" Built-up Column Internal Shell Condition: Light Rust External Shell Color/Shade: White/White		☐ Unknown Gunite Lining Aluminum/Diffuse
			Gray/Light	Gray/Medium	Red/Primer
		10. 11.	External Shell Condition: Roof Color/Shade: White/White	Good Poor Aluminum/Specular Alumi	inum/Diffuse
			☐ Gray/Light ☐	Gray/Medium	rimer
		12.	Roof Condition:	Good Door	
	B.	1.		nical Shoe	☐ Vapor-mounted
		2.	Secondary Seal: Sho	e-mounted Rim-mounted	☐ None
	C.	Deck	Characteristics: Deck Type:	red Welded	
		2.	Deck Fitting Category:	☐ Typical ☐ Detail	
6.	Ex	terna	al Floating Roof Tank		
	A.	Tank 1. 2. 3. 4. 5.	Characteristics Diameter: Tank Volume: Turnovers per year: Maximum Throughput: Internal Shell Condition: Light Rust	feet gal gal/yr Dense Rust Gun	nite Lining

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E Tank Summary External Floating Roof Tank (continued)** A. Tank Characteristics (continued): Paint Color/Shade: White/White ☐ Aluminum/Diffuse Aluminum/Specular Red/Primer ☐ Gray/Medium Gray/Light 7. Paint Condition: Good ☐ Poor B. Roof Characteristics Roof Type: ☐ Double Deck **Pontoon** ☐ Typical Detail 2. **Roof Fitting Category:** C. Tank Construction and Rim-Seal System: ☐ Welded Tank Construction: П Riveted Primary Seal: 2. ☐ Mechanical Shoe Liquid-mounted Vapor-mounted Secondary Seal Weather shield ☐ None Shoe-mounted Rim-mounted 7. Pollutant Emissions A. Fixed Roof Emissions: Pollutant¹ Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) VOC / HAP No emissions occur from the tanks since gasses are routed to the flare. B. Floating Roof Emissions: Pollutant¹ Rim Seal Landing **Total Emissions** Withdrawal **Deck Fitting** Deck Seam Loss² Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) 1. All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air

pollutants is provided in the OGP Application Instructions.

^{2.} Landing losses should be determined according to the procedures in Organic Liquid Storage Tanks chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

7	THE LC OPCINE					
		Summary Section OPGP-E				
1.	Em	uission Point Description				
	A.	Emission Point Designation (Ref. No.): AA-008 (Water Storage Tank No. 1)				
	B.	Product(s) Stored: Produced Water				
	C.	Status: Operating Proposed Under Construction				
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2021				
2.	Ta	nk Data				
	A.	Tank Specifications:				
	В. С.	1. Design capacity 2. True vapor pressure at storage temperature: 3. Maximum true vapor pressure (as defined in \$\frac{1.15}{\$1.1				
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. The tanks will be vented to the flare. If a VRU is necessary, it will be installed.				
	E.	Closest City: ☐ Jackson, MS ☐ Meridian, MS ☐ Tupelo, MS ☐ Mobile, AL ☐ New Orleans, LA ☐ Memphis, TN ☐ Baton Rouge, LA				
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?				

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Section OPGP-E Tank Summary Horizontal Fixed Roof Tank** Shell Length: A. feet B. Shell Diameter: feet C. Working Volume: gal gal/yr D. Maximum Throughput: Is the tank heated? Yes No Yes Is the tank underground? No Shell Color/Shade: ☐ Aluminum/Diffuse Aluminum/Specular Gray/Light Gray/Medium Red/Primer ☐ Good ☐ Poor **Shell Condition: Vertical Fixed Roof Tank** A. Dimensions: 1. Shell Height: 20 feet 2. 12 feet Shell Diameter: 3. Maximum Liquid Height: 19 feet ~10 4. Average Liquid Height: feet Working Volume: 16,800 5. gal 6. Turnovers per year: 1 15,330 7. Maximum throughput: gal/yr Is the tank heated? Yes ⊠ No Shell Characteristics: Shell Color/Shade: White/White \boxtimes Aluminum/Specular Aluminum/Diffuse Red/Primer Gray/Light Gray/Medium \boxtimes 2. Shell Condition: Good Poor C. Roof Characteristics: Roof Color/Shade: Aluminum/Diffuse White/White Aluminum/Specular Gray/Light Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor 3. Type: Cone Dome

			WILNUK SUURCE	
Ta	nk	Sun	nmary	Section OPGP-E
5.	_		al Floating Roof Tank	
<u> </u>	1110	OI II.	a round root remy	
	A.	Tank	κ Characteristics:	
		1.	Diameter: feet	
		2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4.	Maximum Throughput: gal/yr	
		5.	Number of Columns:	
		6.	Self-Supporting Roof?	
		7.	Effective Column Diameter:	
			☐ 9"x7" Built-up Column ☐ 8" Diameter Pipe	☐ Unknown
		8.	Internal Shell Condition:	
		•	☐ Light Rust ☐ Dense Rust ☐	Gunite Lining
		9.	External Shell Color/Shade:	g
			☐ White/White ☐ Aluminum/Specular ☐	Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐	Red/Primer
		10.	External Shell Condition: Good Poor	
		11.	Roof Color/Shade:	
			☐ White/White ☐ Aluminum/Specular ☐ Alumi	num/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Pr	rimar
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Pr	inici
		12.	Roof Condition: Good Poor	
	В.	Rim	Seal System:	
	Δ.	1.	Primary Seal: Mechanical Shoe Liquid-mounted	☐ Vapor-mounted
		2.	Secondary Seal: Shoe-mounted Rim-mounted	☐ None
	C.		k Characteristics:	
		1.	Deck Type:	
		2.	Deck Fitting Category: Typical Detail	
		۷.	Deck Fitting Category. Typical Detail	
6.	Ex	tern	al Floating Roof Tank	-
	A.		k Characteristics	
		1.	Diameter: feet	
		2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4.	Maximum Throughput: gal/yr	
		5.	Internal Shell Condition:	
			☐ Light Rust ☐ Dense Rust ☐ Gun	ite Lining

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E Tank Summary External Floating Roof Tank (continued)** A. Tank Characteristics (continued): Paint Color/Shade: ☐ White/White Aluminum/Specular ☐ Aluminum/Diffuse ☐ Gray/Medium ☐ Red/Primer Gray/Light 7. Paint Condition: Good ☐ Poor B. Roof Characteristics П Double Deck Roof Type: Pontoon ☐ Typical 2. **Roof Fitting Category:** Detail C. Tank Construction and Rim-Seal System: Tank Construction: Welded Riveted 2. Primary Seal: П ☐ Mechanical Shoe Liquid-mounted Vapor-mounted Secondary Seal 3. П Weather shield ☐ None Shoe-mounted Rim-mounted 7. Pollutant Emissions **Fixed Roof Emissions:** Pollutant¹ Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) VOC / HAP No emissions occur from the tank since gasses are routed to the flare. B. Floating Roof Emissions: Pollutant¹ Rim Seal Withdrawal **Deck Fitting** Deck Seam Landing **Total Emissions** Loss² (tons/yr) Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)

2. Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

^{1.} All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

Fla	re	Section OPGP-F
1.	Eq	uipment Description
	A. B.	Emission Point Designation (Ref. No.): AA-001 Equipment Description (include the process(es) that the flare controls emissions from): The flare is utilized to combust produced gas, and to combust emissions from the heater treater and oil and water storage tanks.
	C.	Manufacturer: Custom D. Model: Custom
	E.	Status:
	F.	Requesting a federally enforceable condition to route tank emissions to the flare.
2.	Sys	tem Data
	A.	Efficiency: 98 % Controlling the following pollutant(s): VOC Efficiency: 98 % Controlling the following pollutant(s): HAP Reason for different efficiency:
	В.	Flare Data (if applicable): 1. Flare type: Non-assisted Steam-assisted Air-assisted Air-assisted Air-assisted 2. Net heating value of combusted gas: Est. 1,000 Btu/scf 3. Design exit velocity: N/A ft/sec 4. System: Auto-ignitor Continuous Flame 5. Is the presence of a flare pilot flame monitored? Yes No If yes, please describe the monitoring: thermocouple 6. Is the auto-ignitor system monitored? Yes No If yes, please describe the monitoring: Daily inspections

Compliance Plan Section OPGP-G

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
Example: Engines	40 CFR 63, Subpart ZZZZ	10/01/2002	11/15/2019	N/A
Example: Fugitive Emissions	40 CFR 60, Subpart OOOOa	10/01/2019	11/15/2019	N/A
Example: Flare	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	12/01/2019	12/02/2019	N/A
_	This list of examples is not intended to be conclusive for each type of emission source. This list only provides examples of how the table should be completed.			
AA-001 Flare and facility wide	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	4/01/2021 (est.)	05/01/2021 (est.)	N/A
AA-002 Engine	40 CFR 63, Subpart ZZZZ	4/01/2021 (est.)	05/01/2021 (est.)	N/A
AA-002, Engine, AA- 006a, AA-010	11 Miss. Admin. Code Pt. 2, R.1.3.B.	4/01/2021 (est.)	05/01/2021 (est.)	N/A
AA-002, Engines, AA- 006a, AA-010	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a).	4/01/2021 (est.)	05/01/2021 (est.)	N/A
AA-003 Fugitive Emissions	40 CFR 60, Subpart OOOOa	4/01/2021 (est.)	05/01/2021 (est.)	N/A

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Compliance Plan Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
AA-000 Well affected facility	40 CFR 60, Subpart OOOOa	4/01/2021 (est.)	05/01/2021 (est.)	
				

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING		
Example: Compressor	Item 8 of Table 2d of 40 CFR 63, Subpart ZZZZ	HAPs	Change oil and filter every 2,160 hours of operation or annually, whichever comes first; Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	Monitoring of compressor hours of operation		
Example: Tanks	40 CFR 60.5395(a)(2)	VOC and Methane	Must reduce VOC emissions by 95.0 percent within 60 days after startup of production.	Tank emissions are routed to the flare for destruction at all times of operations.		
Example: Flare	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	H₂S	1 grain H ₂ S per 100 standard cubic feet (1 gr/100 scf)	Recordkeeping of H2S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.		
This list of examples is not intended to be conclusive for each type of emission source. This list only provides examples of how the table should be completed.						
AA-001, Flare & facility wide	1 Miss. Admin. Code Pt. 2, R.1.4.B(2).	H₂S	Any gas stream containing as much as 1 grain H_2S per 100 standard cubic feet (1 gr/100 scf) must be incinerated prior to discharge to the atmosphere	Recordkeeping of H2S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.		
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6590(a))	НАР	Applicability	Applicability Only		
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6603 & Table 2(d))	НАР	Change oil and filter every 1,440 hours of operation or annually, whichever comes first; b. Inspect spark plugs every	Monitoring engine hours of operation		

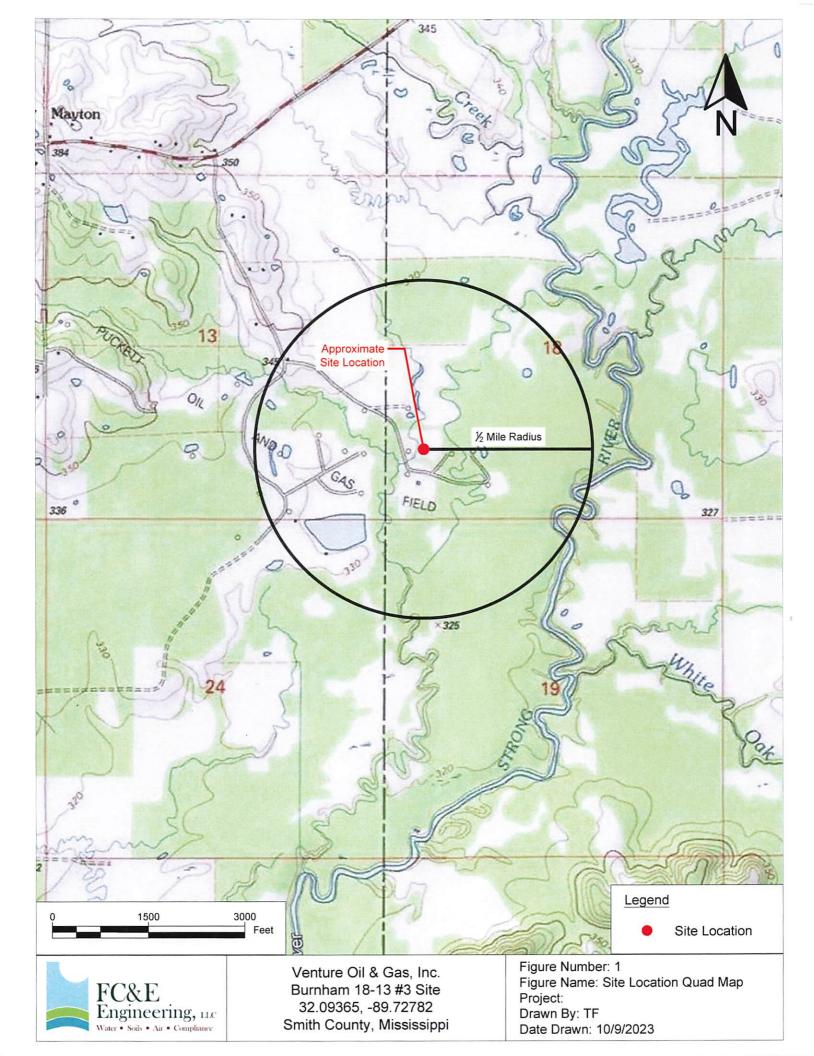
Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
			1,440 hours of operation or annually, whichever comes first, and replace as necessary c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6605)	НАР	Contiuous compliance and General Duty to operate and maintain in a manner consistent with safety and good air pollution control practies to minimize emissions	Process Knowledge
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6640 (a) and Table 6)	НАР	i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own	Process Knowledge
			maintenance plan	
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6655 (a),(d) and (e))	НАР	Recordkeeping Requiremnts	Recordkeeping
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6660 (a),(b) and (c))	НАР	General recordkeeping requirements	Recordkeeping
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6640 (b)	НАР	Report any failure to perform a required work practice as scheduled	Reporting
AA-002, Engine	40 CFR 63, subpart ZZZZ, (§63.6665 (a) and Table 8)	НАР	Applicable requirements under 40 CFR 63 subpart A	Applicability

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

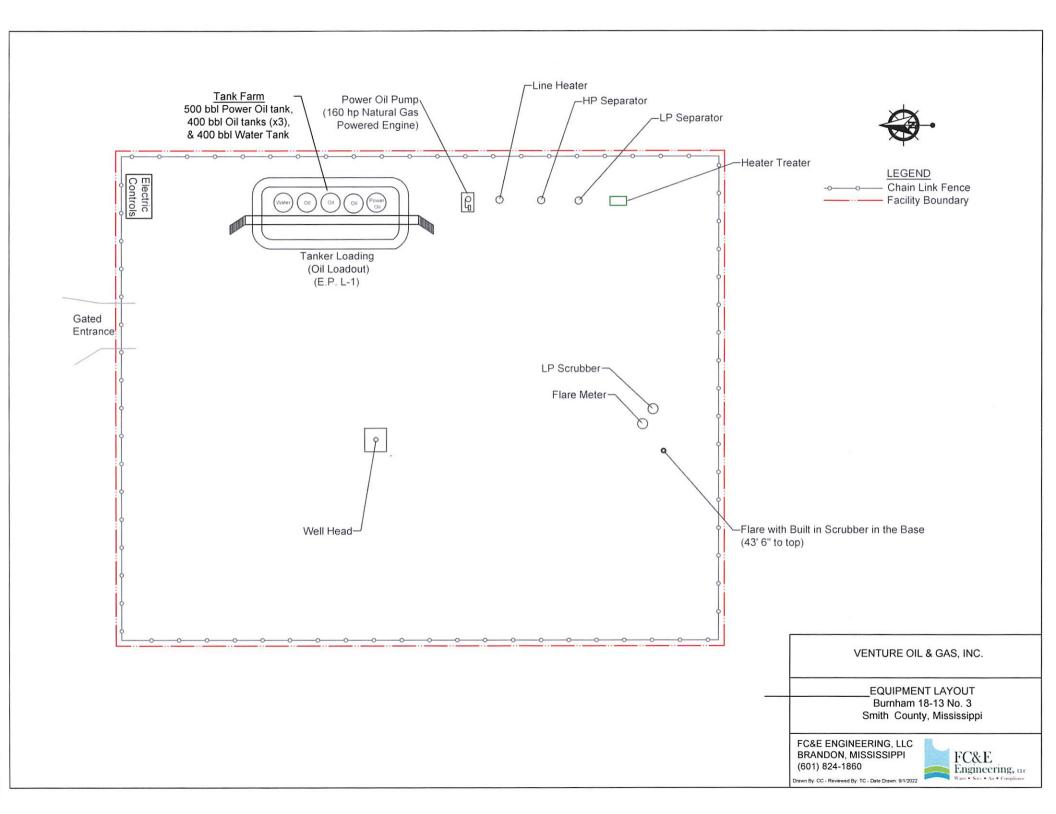

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
AA-003 Fugitive Emissions	40 CFR 60.5365a(i)	VOC and Methane	Applicability	Applicability only
AA-003 Fugitive Emissions	40 CFR 60.5397a(a-g)	VOC and Methane	Develop a fugitive emission monitoring plan	Upon Startup
AA-003 Fugitive Emissions	40 CFR 60.5397a(h)	VOC and Methane	Fugitive emission source repair or replacement requirements	Written Plan development
AA-003 Fugitive Emissions	40 CFR 60.5425a and Table 3	VOC and Methane	Applicability of General Provisions of 40 CFR 60, Subpart A	Applicability only
AA-003 Fugitive Emissions	40 CFR 60.5410a(j)	VOC and Methane	Demonstration of initial compliance	Monitoring
AA-003 Fugitive Emissions	40 CFR 60.415a(h)	VOC and Methane	Demonstration of continuous compliance	Monitoring
AA-003 Fugitive Emissions	40 CFR 60.5420a(c)	VOC and Methane	Recordkeeping requirements	Monitoring and Recordkeeping
AA-003 Fugitive Emissions	40 CFR 60.5420a(b)	VOC and Methane	Reporting requirements	Reporting
AA-008 Storage Tanks	40 CFR 60.5365a(e)	VOC and Methane	Applicability determination may take into account legally and practically enforceable limit on tank emissions	Applicability Only. Federally enforceable limit requested for avoidance.

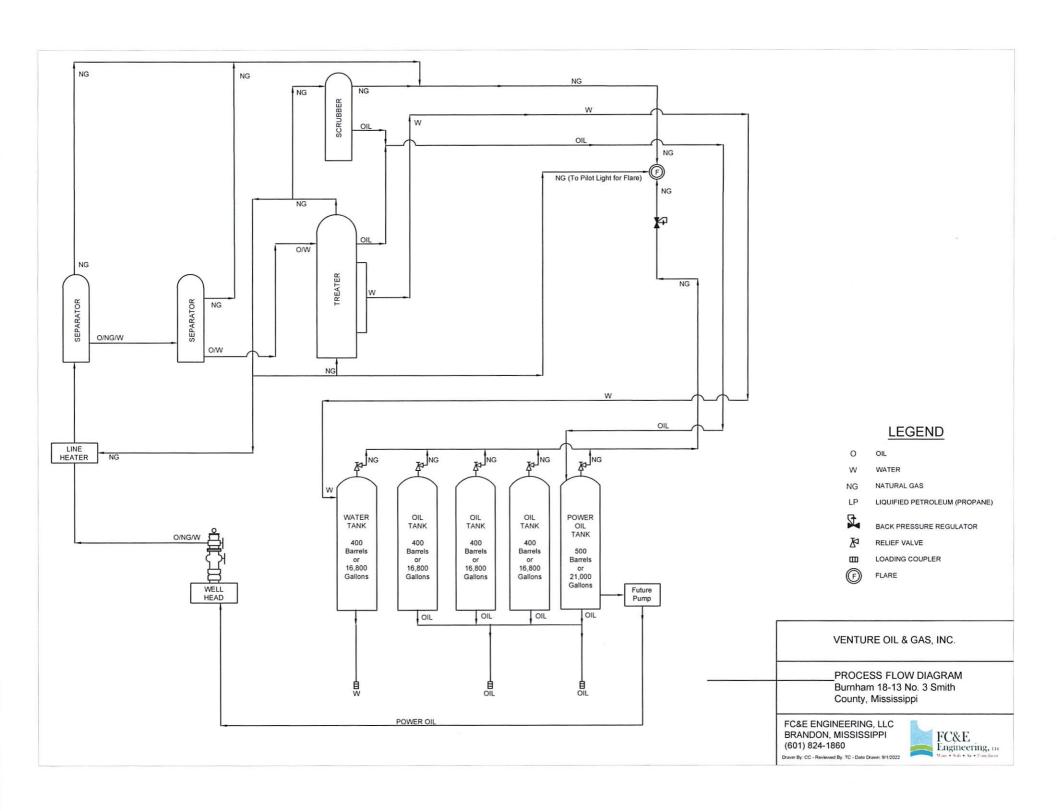
Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
AA-000 Well affected facility	40 CFR 60.5365a(a)	VOC	Applicability	Process Knowledge
AA-000 Well affected facility	40 CFR 60.5375a(a)	VOC	Completion standards/procedures for VOC control	Process Knowledge
AA-000 Well affected facility	40 CFR 60.5410a(a) 40 CFR 60.5415a(a)	VOC	Submit notification, annual report, maintain log of records, as applicable	Recordkeeping and Reporting
AA-000 Well affected facility	40 CFR 60.5420a	VOC	Specific notification, recordkeeping and reporting requirements.	Recordkeeping and Reporting
				

FIGURES




FC&E Engineering, 11.C Water • Soils • Air • Compliance

Burnham 18-13 #3 Site 32.09365, -89.72782 Smith County, Mississippi

Project: Drawn By: TF

Date Drawn: 10/9/2023

ATTACHMENT B

Calculations for Venture Burnham 18-13 No. 3 Tank Battery

10/18/2023 1 of 22

Site Information for Calculations

	Site Name:	Burnhar	n 18-13	No. 3 1	Tank Battery
--	------------	---------	---------	---------	--------------

Potential Crude Production	91,250 bbl/yr	
Potential Gas production	109,500 mcf/yr	
Potential Produced Water	3,650 bbl/yr	
Initial Crude Production	350 bbl/day	- (

Initial Crude Production350 bbl/day(expected maximum daily production)Initial Gas Production350 mcf/day(expected maximum daily production)Initial Water Production10 bbl/day(expected maximum daily production)

Crude Gravity 49

Oil tank W&B Losses

1.31 SCF/stock tank bbl (estimated using E&P Tanks)
Oil tank Flash Gas

73.74 SCF/stock tank bbl (estimated using E&P Tanks)
Water tank W&B Losses

0.0131 SCF/stock tank bbl (using 1% of oil tank emissions)
Water tankFlash Gas

0.7374 SCF/stock tank bbl (using 1% of oil tank emissions)

VRU recovery efficiency 0.00% Flare destruction efficiency 98.00%

10/18/2023 2 of 22

Emission Point Summary

Emission Point Number	Emission Point Description	Design Capacity	Units	Operating Hours
AA-001	Flare	10.25	MMBtu/hr	8760
AA-001a	Flare Pilot	0.05	MMBtu/hr	8760
AA-002	Power Oil Pump Engine	165	hp	8760
AA-003	Fugitive emissions- equipment leaks	-	-	8760
AA-004	High Pressure Separator	-	-	8760
AA-005	Low Pressure Separator	받	-	8760
AA-006	Heater Treater	-	-	8760
AA-006a	Heater Treater (burner)	0.5	mmBtu/hr	8760
AA-007	Misc. Chemical Tanks	-	-	8760
AA-008	Oil and Water Storage Tanks	<u> </u>	-	8760
AA-009	Truck Loading	16,000	gal/hr	As needed
AA-010	Line Heater	0	mmBtu/hr	8760

Note: Storage tanks, separators, and heater treater vent to the flare.

10/18/2023 3 of 22

Proposed Annual Emissions, controlled

Funianian	Annual Emissions, tpy							GHG Emissions, tpy					
Emission Unit ID	Emission Unit	PM	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Flare	0.15	0.15	0.15	14.99	5.60	30.48	0.00	1.28	8807.71	39.35	0.02	9796.27
AA-001a	Flare Pilot	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	25.59	0.00	0.00	25.62
AA-002	Power Oil Pump Engine	0.05	0.10	0.10	0.16	11.83	19.91	0.00	0.17	624.23	0.01	0.00	624.88
AA-003	Fugitive emissions- equipment leaks	-	-	-	0.21	-	_	-	0.01	0.02	0.24	0.00	5.92
AA-004	High Pressure Separator		Gas routed to Flare										
AA-005	Low Pressure Separator		Gas	routed to	Flare								
AA-006	Heater Treater		Gas	routed to	Flare								
AA-006a	Heater Treater (burner)	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.00	255.45	0.00	0.00	255.71
AA-007	Misc. Chemical Tanks (4)		-	-	0.02	-	-	-	0.02	-	-	-	-
AA-008	Oil and Water Tanks (4)		Gas routed to flare										
AA-009	Truck Loading				15.25				0.62	0.03	0.18	0	4.53
AA-010	Line Heater	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.00	255.45	0.00	0.00	255.72
	Totals	0.21	0.28	0.28	30.64	17.66	50.58	0.00	2.11	9713.04	39.79	0.02	10712.93

Notes:

Storage tanks emissions are included in flare emissions.

10/18/2023 4 of 22

Venture King 8-7 No. 1 Tank Battery Potential Annual Emissions, uncontrolled December, 2020

				Anr	Annual Emissions, tpy					GHG Emissions, tpy			
Emission Unit ID	Emission Unit	PM	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Facility gas emissions	-	-	<u> 12</u> 0	749.49	-	-	-	63.86	191.80	2566.84	0.00	64362.83
AA-002	Power Oil Pump Engine	0.051	0.104	0.104	0.16	11.83	19.91	0.003	0.17	624.23	0.01	0.00	624.88
AA-003	Fugitive emissions- equipment leaks	=		-	0.21	Ŀ	-	-	0.01	0.02	0.24	0.00	5.92
AA-004	High Pressure Separator		Gas r	outed to A	A-001								
AA-005	Low Pressure Separator		Gas r	outed to A	A-001								
AA-006	Heater Treater		Gas r	outed to A	A-001								
AA-006a	Heater Treater (burner)	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.0041	232.23	0.00	0.00	232.47
AA-007	Misc. Chemical Tanks	-	-	-	0.02	8-4	-	-	0.02	-	-	-	-
AA-008	Oil and Water Storage Tanks		Gas r	outed to A	A-001								
AA-009	Truck Loading				13.96				0.2536	0.04	0.21	0	5.20
AA-010	Line Heater	0.00	0.01	0.01	0.01	0.11	0.09	0.00	0.0020	127.73	0.00	0.00	127.86
	Totals	0.05	0.12	0.12	763.86	12.04	20.09	0.00	64.32	1048.32	2567.30	0.00	65231.30

Notes:

Potential calculated using highest 30 day average crude production and highest 30 day average gas flared, 7,460 bbls. and 1,952 mcf, respectively, and actual gas analysis.

Speciated HAPs, tpy

n-hexane	20.9193
benzene	3.3078
e-benzene	0.1558
toluene	2.9494
xylenes	1.9735

10/18/2023 5 of 22

Facility Maximum Hourly Emissions, Controlled

					Emissio	ns, lb/h	Г			GHG Emissions, lb/hr			
Emission Unit ID	Emission Unit	PM	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Flare	0.03	0.03	0.03	3.42	1.28	6.96	0.00	0.36	2010.89	8.98	0.00	2236.59
AA-001a	Flare Pilot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.84	0.00	0.00	5.85
AA-002	Power Oil Pump Engine	0.01	0.02	0.02	0.04	2.70	4.55	0.00	0.04	142.52	0.00	0.00	142.67
AA-003	Fugitive emissions- equipment leaks	_	-	-	0.05	-	-1	1- n	0.00	0.00	0.05	0.00	1.35
AA-004	High Pressure Separator				GAS ROU	TED TO Fla	are						
AA-005	Low Pressure Separator				GAS ROU	TED TO FL	ARE						
AA-006	Heater Treater				GAS ROU	TED TO FL	ARE						
AA-006a	Heater Treater (burner)	0.00	0.00	0.00	0.00	0.05	0.04	0.00	0.00	58.32	0.00	0.00	58.38
AA-007	Misc. Chemical Tanks	-	-	-	0.00	-	-	-	0.00	-	-	255	0.00
AA-008	Oil and Water Storage Tanks				GAS ROU	TED TO FL	ARE						
AA-009	Truck Loading	-	-	-	117.72	-	-	-	5.27	0.01	0.04	0	1.03
AA-010	Line Heater	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	29.16	0.00	0.00	29.19
	Totals	0.05	0.06	0.06	121.23	4.03	11.55	0.001	5.68	2217.59	9.08	0.00	2445.87

Notes:

Storage tanks emissions are included in flare emissions.

Truck loading hourly emissions are dictated by the capacity of the transfer pump

10/18/2023 6 of 22

Flash Gas Analysis and Conversions

Component	VOC and/or HAP?	Mol %	Wt %
Total S	None	***	0.00000%
CO2	None	0.362%	0.160%
N2	None	0.000%	0.000%
Methane	None	11.546%	1.852%
Ethane	None	6.480%	1.949%
Propane	VOC	19.755%	8.712%
Isobutane	VOC	20.171%	11.724%
Butane	VOC	12.576%	7.309%
Isopentane	VOC	9.194%	6.633%
Pentane	VOC	5.953%	4.295%
Hexane	VOC	3.906%	3.366%
Heptanes	VOC	6.630%	6.644%
Benzene	VOC and HAP	0.390%	0.544%
Toluene	VOC and HAP	0.388%	0.639%
e-Benzene	VOC and HAP	0.015%	0.028%
Xylenes	VOC and HAP	0.211%	0.400%
n-hexane	VOC and HAP	2.422%	3.726%
Total VOC		79.190%	54.020%
Total HAP		3.426%	5.337%

Heat of combustion, Btu/ft ³	2465.9
Molecular weight	46.02

Gas analysis generated by E&P Tanks software.

10/18/2023 7 of 22

Produced Gas Analysis and Conversions

Component	VOC and/or HAP?	Mol %	Wt%
Total S	None	0.000%	0.00000%
CO2	None	2.292%	5.061%
N2	None	0.757%	1.062%
Methane	None	84.375%	67.762%
Ethane	None	8.093%	12.185%
Propane	voc	2.483%	5.483%
Isobutane	voc	0.499%	1.452%
Butane	voc	0.743%	2.162%
Isopentane	voc	0.228%	0.824%
Pentane	VOC	0.210%	0.759%
Hexane	VOC	0.210%	0.906%
n-Hexane	VOC and HAP	0.115%	0.496%
Heptanes+	VOC	0.320%	1.605%
Benzene	VOC and HAP	0.036%	0.141%
Toluene	VOC and HAP	0.011%	0.051%
e-Benzene	VOC and HAP	0.001%	0.005%
Xylenes	VOC and HAP	0.009%	0.048%
Total VOC		4.483%	13.931%
Total HAP		0.172%	0.741%

Heat of combustion, Btu/ft ³	1353.0
Molecular weight	26.18

10/18/2023 8 of 22

TANK W & B GAS COMPOSITION

Component	VOC and/or HAP?	Mol %	Wt%
Total S	None	0.000%	0.00000%
CO2	None	0.32%	0.25%
N2	None	0.00%	0.00%
Methane	None	4.76%	1.35%
Ethane	None	7.23%	3.86%
Propane	VOC	24.31%	19.03%
Isobutane	VOC	23.60%	24.34%
Butane	VOC	14.17%	14.62%
Isopentane	VOC	9.38%	12.01%
Pentane	VOC	5.77%	7.39%
Hexane	VOC	3.28%	5.02%
Heptanes+	VOC	4.52%	8.03%
Benzene	VOC and HAP	0.32%	0.44%
Toluene	VOC and HAP	0.27%	0.44%
e-Benzene	VOC and HAP	0.01%	0.02%
Xylenes	VOC and HAP	0.12%	0.23%
n-hexane		1.95%	2.98%
Total VOC		85.75%	91.56%
Total HAP		2.660%	1.66%

Heat of combustion, Btu/ft ³	2796.8
Molecular weight	51.43

Note: W&B vapors and truck loading vapors assumed to have same composition Gas analysis generated by E&P Tanks software.

10/18/2023 9 of 22

Tank Uncontrolled Emissions Summary

			Initial	
	<u>Potential</u>		Production	
Total flash gas ,	6,731,467	SCF/yr	1,076	SCF/hr
Total flash gas ,	399.93	tpy	127.82	lb/hr
Total tank W&B loss	119,585	SCF/yr	19	SCF/hr
Total tank W &B losses	7.94	tpy	2.54	lb/hг
Total tank emissions	407.87	tpy	130.35	lb/hr
Tank emissions to flare	407.87	tpy	130.35	lb/hr
	2691.51			
	0.16	0.15	0.0004	

Notes:

10/18/2023 10 of 22

^{1.} Total flash gas calculated using gas/oil ratio from E&P tanks program and potential crude and water production

^{2.} All tank emissions included with flare, Emission Point AA-001.

Calculation of Criteria and Hazardous Flare Emissions Using Potential Average Production Values

Potential

Gas Flow to Flare:

			roten	<u>liai</u>
Flow to flare of tank fla	sh gas	=	399.93	tpy
Flow to flare of tank Wa	&B emissions		7.94	tpy
flow to flare from truck	loading	=	0.00	tpy
Total process gas to flai	re	=	407.87	tpy
Produced gas to flare		=	3776.96	tpy
		=	109500.00	mcf/yr
	Produced gas combustion heat	=	148153.50	• •

produced gas combustion heat = 148153.50 MMBtu/yr process gas combustion heat = 16587.74 MMBtu/yr flare gas combustion heat, total = 164741.24 MMBtu/yr

			<u>Potentia</u>	l Emissions		Potential Er	missions
	<u>Pollutant</u>	Emission factor, lbs/MMBtu	<u>lb/hr</u>	<u>tpy</u>	<u>Pollutant</u>	<u>lb/hr</u>	<u>tpy</u>
	NOx	0.068	1.279	5.601	n-hexane	0.2196	0.9617
Calculation	n CO	0.37	6.958	30.477	benzene	0.0344	0.1506
	PM	0.00186	0.004	0.153	e-benzene	0.0014	0.0063
	VOC	mass balance	3.422	14.990	toluene	0.0206	0.0901
	SO ₂	mass balance	0.000	0.000	xylenes	0.0156	0.0685
	PM10/PM2.5	0.00745	0.140	0.614	Total HAPs	0.2916	1.2772

Notes:

- 1. Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.
- Mass balance calculations utilize flare input gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.
- 4. HAP emissions calculated using mass balance and 98% destruction efficiency

10/18/2023 11 of 22

Calculation of Maximum Hourly Criteria and Hazardous Flare Emissions Using Initial Production Values

Gas Flow to Flare:

		<u>Potential</u>
Flow to flare of tank flash gas	=	127.82 lbs/hr
Flow to flare of tank W&B emissions		2.54 lbs/hr
flow to flare from truck loading	=	0.00 lbs/hr
Total process gas to flare	=	130.35 lbs/hr
Produced gas to flare	=	1006.04 lbs/hr
	=	14.58 mcf/hr
Produced gas combustion heat	=	19.73 MMBtu/hr
process gas combustion heat	=	2.65 MMBtu/hr
flare gas combustion heat, total	=	22.38 MMBtu/hr

			Maximum Hourly Emissions		Potential Emissions
	<u>Pollutant</u>	Emission factor, lbs/MMBtu	<u>lb/hr</u>	Pollutant	<u>lb/hr</u>
	NOx	0.068	1.522	n-hexane	0.2709
Calculation	CO	0.37	8.281	benzene	0.0425
	PM	0.00745	0.167	e-benzene	0.0018
	VOC	mass balance	4.231	toluene	0.0268
	SO ₂	mass balance	0.000	xylenes	0.0200
				Total HAPs	0.3619

Notes:

- 1. Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.
- 2. Mass balance calculations utilize flare input process gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.
- 4. HAP emissions calculated using mass balance and 98% destruction efficiency

10/18/2023 12 of 22

Calculation of Uncontrolled Emissions of Produced Gas

		<u>Potential</u>
Flow to flare from tank flash gas	=	399.93 tpy
Flow to flare from tank W&B emissions	=	7.94
flow to flare from truck loading	=	0.00 tpy
Produced gas to flare from separators	=	3776.96 tpy

		Potential 8	<u>Emissions</u>
<u>Pollutant</u>	Emission factor, lbs/MMBtu	<u>lb/hr</u>	<u>tpy</u>
. VOC	mass balance	171.118	749.49
H2S	mass balance	0.000	0.00
n-hexane	mass balance	10.978	48.09
benzene	mass balance	1.719	7.53
e-benzene	mass balance	0.072	0.32
toluene	mass balance	1.029	4.50
Calculation xylenes	mass balance	0.782	3.42
total HAPs	mass balance	14.580	63.86
methane	mass balance	586.037	2566.84
CO2	mass balance	43.791	191.80

Note: For calculation of uncontrolled emissions, flare efficiency is 0%.

10/18/2023 13 of 22

Calculation of Flare GHG Emissions

Process gas to flare, mmcf/yr 6.73
N2O emission factor, kg/mmBtu 0.0001
HHV, mmBtu/scf 0.001235
CO2 density, kg/ft3 0.052600
CH4 density, kg/ft3 0.019200
flare efficiency 98.00%

PROCESS GAS

carbon	CO2 (from o	ombustion)	CO2 input	CH4, uncombusted		N2O	CO2e
atoms	cubic ft.	tpy	tpy	cubic ft. tpy1		tpy¹	tpy
			1.41E+00	1.55E+04	3.28E-01	9.14E-04	9.88E+00
1	7.61E+05	4.40E+01	*	İ			4.40E+01
2	8.54E+05	4.94E+01					4.94E+01
3	3.91E+06	2.26E+02					2.26E+02
4	8.64E+06	5.00E+02					5.00E+02
5+	8.80E+06	5.09E+02					5.09E+02
Total	2.30E+07	1.33E+03	1.41E+00	1.55E+04	3.28E-01	9.14E-04	1.34E+03

PRODUCED GAS

produced gas to flare, mmcf/yr

109.50

carbon	CO2 (from c	ombustion)	CO2 input	CH4, unco	CH4, uncombusted		CO2e
atoms	cubic ft.	tpy	tpy	cubic ft. tpy		tpy	tpy
			1.45E+02	1.85E+06	3.90E+01	1.49E-02	1.13E+03
1	9.05E+07	5.24E+03					5.24E+03
2	1.74E+07	1.00E+03					1.00E+03
3	7.99E+06	4.63E+02					4.63E+02
4	5.33E+06	3.08E+02					3.08E+02
5+	5.50E+06	3.18E+02					3.18E+02
Total	1.27E+08	7.33E+03	1.45E+02	1.85E+06	3.90E+01	1.49E-02	8.46E+03

Note: GHG emissions calculated using procedures from 40 CFR 98.233(n)(4)

10/18/2023 14 of 22

Equipment Component Fugitive Emissions

Components	Counts	Emission Factor ¹	Emissions	Wt. Fraction	VOC Em	issions	VOC%	HAP Em	HAP Emissions		missions, t	on/yr
		scf/hr/component	lbs/hr	voc	lb/hr	tpy	HAP ³	lb/hr	tpy	CO2	CH4	CO2e
Valves:	25											
gas/vapor	12	0.027	0.022351304	0.14	0.003	0.01	0.74%	0.000	0.001	0.003765	0.050577	1.27
light oil ²	13	0.05	0.04484058	0.54	0.024	0.11	5.34%	0.002	0.010	0.007554	0.092243	2.31
heavy oil	0	0.0005	0	0.14	0.000	0.00	0.74%	0.000	0.000	0	0	0.00
Pumps:			0	0.14			0.74%	0.000	0.000	0	0	0.00
Light oil	0	0.01	0	0.73	0.000	0.00	1.66%	0.000	0.000	0	0	0.00
heavy oil	0	0	0	0.14			0.74%	0.000	0.000	0	0	0.00
Flanges:	46		0	0.14			0.74%	0.000	0.000	0	0	0.00
gas/vapor		0	0	0.14	0.000	0.00	0.74%	0.000	0.000	0	0	0.00
light oil	46	0.003	0.00952	0.73	0.007	0.03	1.66%	0.000	0.001	0.001604	0.019584	0.49
heavy oil	0	0.0009	0	0.14	0.000	0.00	0.74%	0.000	0.000	0	0	0.00
Relief Valve:			0	0.14			0.74%	0.000	0.000	0	0	0.00
gas/vapor	0	0.04	0	0.14	0.000	0.00	0.74%	0.000	0.000	0	0	0.00
Connectors:	44		0	0.14			0.74%	0.000	0.000	0	0	0.00
gas/vapor	22	0.003	0.004553043	0.14	0.001	0.00	0.74%	0.000	0.000	0.000767	0.009366	0.23
light oil	22	0.007	0.010623768	0.73	0.008	0.03	1.66%	0.000	0.001	0.00179	0.021854	0.55
heavy oil	0	0.0003	0	0.14	0.000	0.01	0.74%	0.000	0.000	0	0	0.00
Other	1	0.3	0.020695652	0.14	0.003	0.01	1.66%	0.000	0.002	0.003486	0.042574	1.07
				Totals	0.046	0.212		0.003	0.014	0.019	0.236	5.924

Notes:

1. Emission factors and equipment counts taken from 40 CFR 98, subpart W.

2. Light oil is defined as having API gravity greater than or equal to 20 degrees API.

3. Vapors emitted from gas service equipment assumed to be same as produced gas, vapor from liquid service equipment assumed to be the same as flash gas.

ent assumed to be the sa	ame as flash gas.		heater treater	1	8	12	20	0	0
	<u>lb/hr</u>	tpy	header	0	0	0	0	0	0
n-hexane	0.00400	0.01753	separator	2	12	24	20	0	
benzene	0.00062	0.00272	meters/piping	0	0	0	0	0	0
ethyl benzene	0.00002	0.00010	compressor	0	0	0	0	4	0
toluene	0.00022	0.00098	dehydrator	0	0	0	0	0	0
xvlene	0.00021	0.00093		total	25	46	44	4	1

Equipment

wellhead

Valves

5

1

<u>Flanges</u> Fittings

10

0

1

Count

10/18/2023 . 15 of 22

ENGINE POTENTIAL EMISSIONS CALCULATIONS

		Heat Input			Emissions, tpy						GHG Emissions, tons/yr		
Engine No.	HP	mmBtu/hr	NOx	VOC	CO	SO2	TSP	PM10	PM2.5	CO2	CH4	N2O	CO2e
AA-002	165	1.22	11.83	0.16	19.91	0.00	0.05	0.10	0.10	624.23	1.18E-02	0.001	624.88
		Total	11.83	0.16	19.91	0.00	0.05	0.10	0.10	624.23	0.01	0.00	624.88

<u>ant</u>	AP-42 <u>Emission Factor</u> Ibs/MMBtu	Conversion Factor, g to lbs 0.0022046
	2.21	CO2
	0.0296	CH4
	3.72	N2O
	0.000588	
	0.00950	
	0.00950	
ıd	0.00991	

10/18/2023 16 of 22

ENGINE HAP EMISSIONS CALCULATIONS

	Natural Gas	AA-002		
	Emission Factor,	HAP EM	ISSIONS	•
НАР	lbs/mmBtu	lbs/hr	tpy	
1,1,2,2-Tetrachloroethane	2.53E-05	3.09E-05	1.35E-04	
1,1,2-Trichloroethane	1.53E-05	1.87E-05	8.19E-05	
1,3-Butadiene	6.63E-04	8.10E-04	3.55E-03	
1,3-Dichloropropene	1.27E-05	1.55E-05	6.80E-05	
Acetaldehyde	2.79E-03	3.41E-03	1.49E-02	
Acrolein	2.63E-03	3.21E-03	1.41E-02	
Benzene	1.58E-03	1.93E-03	8.46E-03	
Carbon Tetrachloride	1.77E-05	2.16E-05	9.47E-05	
Chlorobenzene	1.29E-05	1.58E-05	6.90E-05	
Chloroform	1.37E-05	1.67E-05	7.33E-05	
Ethylbenzene	2.48E-05	3.03E-05	1.33E-04	
Ethylene Dibromide	2.13E-05	2.60E-05	1.14E-04	
Formaldehyde	2.05E-02	2.50E-02	1.10E-01	
Methanol	3.06E-03	3.74E-03	1.64E-02	
Methylene Chloride	4.12E-05	5.03E-05	2.20E-04	
Naphthalene	9.71E-05	1.19E-04	5.20E-04	
PAH	1.41E-04	1.72E-04	7.55E-04	
Styrene	1.19E-05	1.45E-05	6.37E-05	
Toluene	5.58E-04	6.82E-04	2.99E-03	
Vinyl Chloride	7.18E-06	8.77E-06	3.84E-05	
Xylene	1.95E-04	2.38E-04	1.04E-03	
Total		3.96E-02	1.73E-01	

AA-002 heat input=

1.22 mmBtu/hr

annual operating hours=

8760

Emission factors from AP-42, Table 3.2-3

Truck Loading Emissions Calculations

Basis: 30 day average production rates

 $L_L = 12.46 * (SPM)/T$

(from EPA AP-42 Section 5.2.2.1)

Where:

L_L = Loading loss, lbs per 1,000 gal of liquid loaded

S = Saturation factor

P = True vapor pressure of liquid, psia
M = Molecular weight of vapors, lb/lb-mole
T = Temperature of bulk liquid loaded, degrees R

CRUDE OIL

		Mol. Wt.			Loading		Uncontrolled Estimated		
"S"	of	Of	of	Volume	Rate	Emissions,			
Factor	Liquid	Vapors	Liquid			Total Hydrocarbons			
	(psia)	(lb/lb- mole)	(R)	(10 ³ gal/yr)	(gal/hr)	Lí	(lb/hr)	(tpy)	
1.45	5	48.00	545	3,833	16,000	7.96	127.30	15.25	

PRODUCED WATER

	EPA	True VP	Mol. Wt.	Temp.	Loaded	Loading	Uncont	Uncontrolled Estimated		
	"S"	of	Of	of	Volume	Rate	E	missions	3,	
Calculation	Factor	Liquid	Vapors	Liquid			Total	otal Hydrocarbons		
		(psia)	(lb/lb- mole)	*(R)	(10 ³ gal/yr)	(gal/hr)	7	(lb/hr)	(tpy)	
	1.45	0.05	48.00	545	153	16,000	0.08	1.27	0.01	

HAPs	tons/yr
Benzene	0.067006
Toluene	0.066346
e-Benzene	0.002558
Xylenes	0.034945
n-hexane	0.454027
	0.624882

10/18/2023 18 of 22

Truck Loading Emissions Calculations, Maximum Ibs/hr

 $L_L = 12.46 * (SPM)/T$

(from EPA AP-42 Section 5.2.2.1)

Where:

L_L = Loading loss, lbs per 1,000 gal of liquid loaded

S = Saturation factor

P = True vapor pressure of liquid, psia M = Molecular weight of vapors, lb/lb-mole

T = Temperature of bulk liquid loaded, degrees R

CRUDE OIL

EPA "S"	True VP of	Mol. Wt. Of	Temp.	Sales Volume	Loading Rate	Uncont	timated	
Factor	Liquid	Vapors	Liquid			Total	rbons	
	(psia)	(lb/lb- mole)	*(R)	(10 ³ gal/hr)	(gal/hr)	LL	(lb/hr)	
1.45	5	48.00	545	16.0	16,000	7.96	127.30	

PRODUCED WATER

	EPA	True VP	Mol. Wt.	Temp.	Loaded	Loading	Uncont			
	"S"	of	Of	of	Volume	Rate	E	missions	,	
Calculation	Factor	Liquid	Vapors	Liquid			Total	Total Hydrocar		
		(psia)	(lb/lb-	(R)	(10 ³ gal/hr)	(gal/hr)	LL	(lb/hr)		
			mole)							
	1.45	0.05	48.00	545	16.0	16,000	0.08	1.27		

HAPs	lbs/hr
Benzene	0.564848
Toluene	0.559285
e-Benzene	0.021562
Xylenes	0.294576
n-hexane	3.82734
total	5.267611

10/18/2023 19 of 22

External Combustion Equipment Emissions Calculations

	Capacity		Emissions, tons/yr									GHG Emissions, metric tons/yr			
Source	MMBtu/hr	PM	PM10	Pm 2.5	NOx	СО	VOC	SO2	HAP	CO2	CH4	N20	CO2e		
Heater Tre	0.5	0.004	0.016	0.016	0.215	0.180	0.012	0.001	0.004	255.45	0.00	0.00	255.72		
Line Heate	0.5	0.004	0.016	0.016	0.215	0.180	0.012	0.001	0.002	255.45	0.00	0.00	255.72		
Totals		0.008	0.033	0.033	0.429	0.361	0.024	0.003	0.006	510.90	0.01	0.00	511.44		

Ap-42 natural gas combi

Emission	Factors, lbs/MMBtu
Pm	0.001863
PM10	0.007451
PM2.5	0.007451
NOx	0.098039
CO	0.082353
VOC	0.005392
SO2	0.000588
HAPs	0.001851

40 CFR 98, subpart C

Emission F	actors, kg/MMBtu
CO2	53.02
CH4	0.001
N2O	0.0001

Natural Gas Combustion HAP Calculations

	Natural Gas	Heate	Treater	Flare	Pilot	Line Heater	
	Emission Factor,	HAP EN	MISSIONS	HAP EM	ISSIONS	HAP EMISSIONS	
HAP	lbs/mmBtu	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
Benzene	2.06E-06	1.03E-06	4.51E-06	1.03E-07	4.51E-07	5.15E-07	2.25E-06
Dichlorobenzene	1.18E-06	5.88E-07	2.58E-06	5.88E-08	2.58E-07	2.94E-07	1.29E-06
Formaldehyde	7.35E-05	3.68E-05	1.61E-04	3.68E-06	1.61E-05	1.84E-05	8.05E-05
Hexane	1.76E-03	8.82E-04	3.86E-03	8.82E-05	3.86E-04	4.41E-04	1.93E-03
Naphthalene	5.98E-07	2.99E-07	1.31E-06	2.99E-08	1.31E-07	1.50E-07	6.55E-07
Polycyclic Organic Matter	2.38E-05	1.19E-05	5.21E-05	1.19E-06	5.21E-06	5.95E-06	2.61E-05
Toluene	3.33E-06	1.67E-06	7.30E-06	1.67E-07	7.30E-07	8.33E-07	3.65E-06
Total		9.35E-04	4.09E-03	9.35E-05	4.09E-04	4.67E-04	2.05E-03

Burner Heat Input= Flare Pilot Heat Input= 0.50 mmBtu/hr 0.05 mmBtu/hr

Line Heater Heat Input

0.25 mmBtu/hr

annual operating hours=

8760

Emission factors from AP-42, Table 1.4-3

10/18/2023 21 of 22

FLARE PILOT CALCULATIONS

Emission	Combustion	Capacity		Criteria Emissions, tons/yr							
Unit ID	Source	ммвтин	PM	PM10	PM2.5	NOx	CO	VOC	SO2	HAP	
AA-001a	Flare (Pilot)	0.05	0.000	0.002	0.002	0.021	0.018	0.001	0.000	0.000	

Emission	Combustion	Capacity	GHG	Emissions	s, metric to	ıs/yr	GHG Emissions, short tons/yr					
Unit ID	Source	MMBTUH	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e		
AA-001a	Flare (Pilot)	0.05	23.223	0.000	0.000	23.246	25.59	0.00	0.00	25.62		

Gas combustion

AP-42 Em	ission Factors, lbs/MMBtu	Emission	Factors, kg/MMBtu
TSP	0.001863	CO2	53.02
PM10	0.007451	CH4	0.001
PM2.5	0.007451	N2O	0.0001
NOx	0.098039		
co	0.082353		
voc	0.005392		
SO2	0.000588		
HAPs	0.001851		

APPENDIX B: BACKUP DOCUMENTATION

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: City:

Anti-Foam Tank

State: Company:

Stringer Mississippi Venture Oil Horizontal Tank

Type of Tank: Description:

250-Gallon Anti-Foam Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 5.00 Volume (gallons): 250.00 Turnovers: 1.46 Net Throughput(gal/yr):

Is Tank Heated (y/n):

365.00

Is Tank Underground (y/n):

Paint Characteristics

Shell Color/Shade:

White/White

Shell Condition

Good

N

Breather Vent Settings

Vacuum Settings (psig):

-0.03

Pressure Settings (psig)

0.03

Meterological Data used in Emissions Calculations: Jackson, Mississippi (Avg Atmospheric Pressure = 14.59 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Anti-Foam Tank - Horizontal Tank Stringer, Mississippi

Mixture/Component	Daily Liquid Surf. Bit Temperature (dog F) Tem		Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations		
Toluene	All	66.19	60.06	72.32	64.24	0.3992	0.3307	0.4793	92.1300			92.13	Option 2: A=6.954, B=1344.8, C=219.48

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Anti-Foam Tank - Horizontal Tank Stringer, Mississippi

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Toluene	0.32	7.47	7.79						

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: Citv:

Corrosion Inhibitor Tank

State: Company: Type of Tank:

Stringer Mississippi Venture Oil Horizontal Tank

Description:

55-Gallon Corrosion Inhibitor Drum(s)

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 3.00 Volume (gallons): 55.00 Turnovers: 20.00 Net Throughput(gal/yr): 1.095.00

Is Tank Heated (y/n): Is Tank Underground (y/n):

Paint Characteristics

Shell Color/Shade: **Shell Condition**

White/White

Good

Ν

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Jackson, Mississippi (Avg Atmospheric Pressure = 14.59 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Corrosion Inhibitor Tank - Horizontal Tank Stringer, Mississippi

Liquid Daily Liquid Suri. Bulk Vapor Liquid Vapor Temperature (deg F) Temp Vapor Pressure (psia) Moi. Mass Mass Moi. Basis for Vapor Pressure Mixture/Component Month Avg. Min. Max. (deg F) Avg. Min. Max. Weight. Fract. Fract. Weight Calculations	Toluene	All	66.19	60.06	72.32	64.24	0.3992	0.3307	0.4793	92.1300			92.13	Option 2: A=6.954, B=1344.8, C=219.48	_
Daily Liquid Suri. Bulk Vapor Liquid Vapor	Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations	
						Bulk	Vapo	r Pressure	(psia)				Mol.	Basis for Vapor Pressure	

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Corrosion Inhibitor Tank - Horizontal Tank Stringer, Mississippi

		Losses(lbs)								
Components	Working Loss Breathing Loss Total Emission									
Toluene	0.96 2.74									

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

Emulsion Breaker Tank

City: State: Company: Type of Tank: Stringer Mississippi Venture Oil Horizontal Tank

Description:

250-Gallon Emulsion Breaker Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 5.00 Volume (gallons): 250.00 Turnovers: 2.92 Net Throughput(gal/yr): 730.00

Is Tank Heated (y/n): is Tank Underground (y/n): N

Paint Characteristics

Shell Color/Shade: **Shell Condition**

White/White

Good

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig)

-0.03

0.03

Meterological Data used in Emissions Calculations: Jackson, Mississippi (Avg Atmospheric Pressure = 14.59 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Emulsion Breaker Tank - Horizontal Tank Stringer, Mississippi

Mixture/Component	Month	Avg. 66.19	Min. 60.06	Max. 72.32	(deg F) 64.24	Avg. 0.3992	Min. 0.3307	Max. 0.4793	Weight. 92.1300	Fract.	Fract.	Weight 92.13	Calculations Option 2: A=6.954, B=1344.8, C=219.48
Daily Liquid Surf.		Liquid Bulk Temp	ulk			Vapor Liquid Moi. Mass	Vapor Mass	Mol.	Basis for Vapor Pressure				

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Emulsion Breaker Tank - Horizontal Tank Stringer, Mississippi

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Toluene	0.64	7.47	8.11							

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

Methanol Tank

City: State:

Stringer Mississippi

Company: Type of Tank: Venture Oil Horizontal Tank

Description:

330-Gallon Methanol Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 5.00 Volume (gallons): 330.00 Turnovers: 2.21

Net Throughput(gal/yr):

730.00

Is Tank Heated (y/n): Is Tank Underground (y/n):

Paint Characteristics

Shell Color/Shade:

Shell Condition

White/White

Good

N

Breather Vent Settings

Vacuum Settings (psig):

-0.03

Pressure Settings (psig)

0.03

Meterological Data used in Emissions Calculations: Jackson, Mississippi (Avg Atmospheric Pressure = 14.59 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Methanol Tank - Horizontal Tank Stringer, Mississippi

Mixture/Component	Month		illy Liquid S perature (de Min.		Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Methyl alcohol	All	66.19	60.06	72.32	64.24	1.7478	1.4448	2.1035	32.0400	-		32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Methanol Tank - Horizontal Tank Stringer, Mississippi

	Losses(ibs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Methyl alcohol	0.97	17.15	18.13						

```
Project Setup Information
*******
Project File : Untitled.Ept
Control Efficiency

Converse Separate

Control Efficiency

Converse Separate

Control Separate

Control Efficiency

Converse Separate

Convers
Known Separator Stream : Geographical Region
Geographical Region : All Regions in US
Entering Air Composition : No
Well ID
                                                   : Venture Burnham 18-13 No.3 :
Date
                                                   2023.10.18
 *********************
* Data Input
**************************
Separator Pressure
                                                : 45.00[psig]
Separator Pressure : 45.00[psice separator Temperature : 140.00[F]
Ambient Pressure : 14.70[psia]
Ambient Temperature : 140.00[F]
C10+ SG : 0.8930
C10+ SG
C10+ MW
                                                 : 277.00
 -- Low Pressure Oil ------
     No. Component
                                                           mol %
                                                               0.0000
      1
                   H2S
                                                               0.0000
                  02
                 CO2
                                                               0.0400
      3
                 N2
                                                               0.0000
                 C1
                                                               1.2100
      5
      6
                  C2
                                                               0.7600
      7
                 С3
                                                               2.9200
                 i-C4
                                                              4.1500
      Я
                 n-C4
i-C5
      9
                                                               3.0600
      10
                                                               3.9300
                 n-C5
                                                             3.0900
      11
                 C6
      12
                                                              4.9100
                 C7
C8
      13
                                                            13.0800
      14
                                                           14.6200
                C9
C10+
Benzene
      15
                                                               7.6300
      16
                                                           31.1400
      17
                                                             0.6900
                 Toluene
                                                            1.9400
      18
                 E-Benzene
Xylenes
n-C6
                                                            0.1900
      19
      20
                                                               2.9800
                                                               3.6600
      21
      22
                   224Trimethylp
                                                             0.0000
-- Sales Oil ------
 Production Rate : 218[bbl/day]
 Days of Annual Operation : 365 [days/year]
API Gravity : 47.0
Reid Vapor Pressure : 6.00[psia]
                                           : 80.00[F]
 Bulk Temperature
 : 21.00[ft]
 Diameter
                                                : 16.00[ft]
 Shell Height
Cone Roof Slope
Average Liquid Height : 8.00[ft]
Vent Pressure Range : 0.06[psi]
Cone Roof Slope
 -- Meteorological Data ------
City : Jackson, MS
Ambient Pressure : 14.70[psia]
Ambient Temperature : 140.00[F]
Min Ambient Temperature : 52.70[F]
```

Max Ambient Temperature : 76.30[F]
Total Solar Insolation : 1409.00[Btu/ft^2*day]

***	*****	*****	******	*****	******	*****	******	*****
*	Calculation R	esults						*
	******							*****
	Emission Summary							
Iten	n	Uncontrolled		led				
Tota	al HAPs	[ton/yr] 23.460	[lb/hr] 5.356					
	al HC	437.788	99.952					
			96.653					
	s, C3+	407.954	93.140					
Unco	ontrolled Recove		(140,000)					
	Vapor HC Vapor	16.3600	[MSCFD]					
		75.05	[MSCFD] [SCF/bbl]					
	Emission Composi							
No	Component	Uncontrolled		led				
_		[ton/yr]	[lb/hr]					
1	H2S	0.000	0.000					
2	02	0.000	0.000					
3 4	CO2 N2	1.257 0.000	0.287 0.000					
5	C1	14.448	3.299					
6	C2	15.385	3.513					
7	C3	68.917	15.734					
8	i-C4	92.659	21.155					
9	n-C4	57.728	13.180					
10	i-C5	52.289	11.938					
11	n-C5	33.828	7.723					
12	C6	25.783	5.887					
13	C7	33.003	7.535					
14	C8	16.359	3.735					
15 16	C9 C10+	3.924 0.002	0.896 0.000					
17	Benzene	2.395	0.547					
18	Toluene	2.803	0.640					
	E-Benzene	0.125	0.029					
20	Xylenes	1.752	0.400					
	n-C6	16.388	3.742					
22	224Trimethylp	0.000	0.000					
	Total	439.045	100.239					
:	Stream Data							
	Component		LP Oil					
Emi:	ssions							
				mol %			mol %	mol %
1	H2S	34.80	0.0000	0.0000				0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	C02	44.01	0.0400	0.0037	0.0021	0.3632	0.3184	0.3624 0.0000
4	N2	28.01	0.0000 1.2100	0.0000 0.0481	0.0000 0.0134	0.0000 11.5462	0.0000 4.7561	11.4290
5 6	C1 C2	16.04 30.07	0.7600	0.1170	0.0134	6.4800	7.2324	6.4930
7	C3	44.10	2.9200	1.0276	0.9354	19.7545	24.3085	19.8331
8	i-C4	58.12	4.1500	2.3490	2.2672	20.1714	23.6003	20.2306
9	n-C4	58.12	3.0600	1.9902	1.9437	12.5764	14.1699	12.6039
10	i-C5	72.15	3.9300	3.3383	3.3160	9.1937	9.3778	9.1969
11	n-C5	72.15	3.0900	2.7682	2.7574	5.9530	5.7777	5.9499
12	C6	86.16	4.9100	5.0229	5.0308	3.9060	3.2822	3.8952
-	e2				14 1001		P TANK	4 2170
13	C7	100.20	13.0800	14.0626	14.1081	4.3385	3.1381	4.3178
14	C8	114.23	14.6200	16.0518	16.1129	1.8828 0.4082	1.1624 0.2166	1.8703 0.4049
15 16	C9 C10+	128.28 166.00	7.6300 31.1400	8.4418 34.6405	8.4755 34.7819	0.4082	0.2166	0.4049
17	Benzene	78.11	0.6900	0.7237	0.7254	0.3904	0.3169	0.3891
18	Toluene	92.13	1.9400	2.1144	2.1221	0.3882	0.2660	0.3861
					-	· -	-	

19 20 21 22	E-Benzene Xylenes n-C6 224Trimethylp	106.17 106.17 86.18 114.24	0.1900 2.9800 3.6600 0.0000	0.2097 3.2913 3.7992 0.0000	0.2105 3.3042 3.8073 0.0000	0.0150 0.2110 2.4215 0.0000	0.0089 0.1216 1.9462 0.0000	0.0149 0.2094 2.4133 0.0000
	MW Stream Mole Ratio Heating Value Gas Gravity	[BTU/SCF] [Gas/Air]	148.51 1.0000	158.95 0.8989	159.17 0.8972	55.71 0.1011 3108.39 1.92	56.35 0.0018 3147.61 1.95	55.72 0.1028 3109.06 1.92
	Bubble Pt. @ 100F RVP @ 100F Spec. Gravity @ 100F	(psia) (psia)	59.52 129.92 0.743	10.16 49.63 0.751	8.49 46.58 0.751			

.

•

Delbert Hosemann Secretary of State

This is not an official certificate of good standing.

Name History			
Name		Name Type	
VENTURE OIL & GAS INC.		Legal	
Business Information			
Business Type:	Profit Corporation		
Business ID:	558492		
Status:	Good Standing		
Effective Date:	11/07/1988		
State of Incorporation:	Mississippi		
Principal Office Address:			
Registered Agent			
Name			
JAY DONALD FENTON 207 South 13th Avenue Laurel, MS 39440			
Officers & Directors			
Name	Title		
Jay Donald Fenton 332 Luther Hill Road, A Ellisville, MS 39437	Incorporator		
William Edward Carpenter 112 Westminister Drive Hattiesburg, MS 39401	Incorporator		
Jay Donald Fenton 332 Luther Hill Rd Ellisville, MS 39437	Director, President		
Neil Scrimpshire 9 Heritage Trail Laurel, MS 39440	Director, Secretary, Vice President		