

June 26, 2025

Mississippi Department of Environmental Quality Office of Pollution Control Environmental Permits Division 515 E. Amite Street Jackson, MS 39201

RE: Notice of Intent for Coverage Under the Oil Production General Permit Denbury Onshore, LLC Tinsley Central Facility AI No.: 35323; Permit No.: 3020-00057 Yazoo County, MS

In accordance with MAC Title 11, Part 2, submitted with this are two (2) bound sets of the referenced material. An electronic copy has also been submitted through the EPD Electronic Application Submittal webpage. Request is hereby made for coverage under the Oil Production General Permit (OPGP).

The facility functions as an oil & gas production site and operates controls such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. Details of the operations, emission estimates, and associated emission programs are included herein and verify that the facility should be classified as a synthetic minor source under the State and Federal air permitting programs. All measures should be taken in the review process to assure that the minor classification is federally recognized.

A copy of the public notice is enclosed and will be published in the Yazoo Herald. Additionally, a copy of the public notice and the complete OPGP NOI will be provided to the B.S. Ricks Memorial Library. The public notice, notarized proof of publication, and library proof of receipt will be submitted to MDEQ when available.

If any other information is required regarding these matters, please do not hesitate to contact HLP Engineering, Inc. at (337) 839-1075. All written correspondence should be directed to my attention at: **Denbury Onshore, LLC, 5851 Legacy Circle, Suite 1200, Plano, TX 75024**. Thank you in advance for your assistance with this matter.

Sincerely, **Denbury Onshore, LLC**

Kevin Hendricks Enclosures

Notice of Intent for Oil Production General Permit

Denbury Onshore, LLC

Tinsley Central Facility Yazoo County, MS

June 2025

Table of Contents

Section 1

Facility Information	Section A
Facility Location Map(s)	
Simplified Process Flow Diagram & Process Description	
Facility-Wide Emissions Information	Section B
Maximum Uncontrolled Emissions	B.1
Proposed Allowable Emissions	B.2
Proposed Allowable Hazardous Air Pollutants (HAPs)	B.3
Greenhouse Gas Emissions	B.4
Stack Parameters and Exit Conditions	B.5
Emission Point Source List	B.6

Section 2	
Emission Point Data:	
Tank Summary	Section E
Flare	Section F
Compliance Plan	Section G

Section 3

Emission Calculations

Section 4

Mississippi Secretary of State Certificate of Good Standing Supporting Documents

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Facility (Agency Interest) Information Section OPGP - A 1. Name, Address, and Location of Facility A. Owner/Company Name: Denbury Onshore, LLC B. Facility Name (if different than A. above): Tinsley Central Facility C. Facility Air Permit/Coverage No. (*if known*) : 3020-00057 D. Agency Interest No. (*if known*) : 35323 E. Physical Address 1. Street Address: See driving directions below This facility is located approximately 3.0 miles south of Tinsley, MS. From the interstion of Highway 49 and Anding Oil City Road, travel west on Anding Oil City Road approximately 4.5 miles to Tinsley Road. Travel northwest on Tinsley Road approximately 0.4 mile to the c ·1·,

facility.				
2. City: Tinsley	J		3. State:	MS
4. County: Yazoo			5. Zip Code	: 39194
6. Telephone No.:	972-673-2529		7. Fax No.:	
8. Are facility record	ds kept at this location?	□ Yes	☑ No.	Please complete Item 10.
F. Mailing Address 1. Street Address or 2. City: <u>Plano</u> 4. Zip Code: 75024	P.O. Box: <u>5851 Le</u>	gacy Circle,	Suite 1200 3. State:	TX
4. Zip Code: <u>75024</u>				
G. Latitude/Longitu 1. Collection Point (
☑ Site Er	itrance] Other:		
2. Method of Collec	tion (check one):			
\Box GPS	Specify coordinate s	system (NAI	0 83, etc.)	
🖂 Map Ir	nterpolation (Google Ear	th, etc.)		Other:
3. Latitude (degrees	· · · · · · · · · · · · · · · · · · ·	32 41 38.	80	
•	es/minutes/seconds):	90 26 30.	36	
5. Elevation (<i>feet</i>):	300±			
H. SIC Code:	1311			
2. Name and Addres	s of Facility Contact			
A. Name: Kevin	Hendricks	Title:	Environment	al Compliance Coordinator
B. Mailing Address				
1. Street Address or	P.O. Box: 5851 Le	gacy Circle,	Suite 1200	
2. City: Plano		6 J)	3. State:	ТХ
4. Zip Code: 75024			5. Fax No.:	
6. Telephone No.:	972-673-2529			
-	endricks@exxonmobil.co	m		

Name and A. Name: B. Mailing	Address of Air Contact (<i>if difj</i>	ferent fron	n Facility Con	tact)
B. Mailing			Title:	
	Address			
÷	ldress or P.O. Box:			
2. City:			3. State:	
4. Zip Code	:	_	5. Fax No.:	
6. Telephor		_	-	
7. Email:		_		
Name and	Address of Responsible Offici	al for the	Facility	
	be signed by a Responsible Official		·	n. Code Pt.2, R. 2.1.C(2
A. Name:	Rusty Shaw	Title:	Director o	f Regulatory Affairs
B. Mailing	A ddress			
-		acy Circle, S	Suite 1200	
2. City:	Plano	uey enere, .		ГХ
4. Zip Code	T	_	5. Fax No.:	
-	e No.: 972-673-2777	_		
	rusty.shaw@exxonmobil.com	_		
C. Is the per	rson above a duly authorized repre Yes	esentative ar	nd not a corpora	te officer?
If ves, has y	vritten notification of such authoriz	zation been	submitted to M	DEO?
j j	Yes 🗆 No			uthorization is attached
Type of Oi	Production Notice of Intent ((Check all	that apply)	
\checkmark			D. Carros	for a sisting Comment
	Initial Coverage		Re-Coverage	for existing Coverage
	Modification with Public Notice		Modification	without Public Notice
	Update Compliance Plan			
	opuate compnance r lan			

Facility (Agency Interest) Information

Section OPGP - A

6. Equipment List (*Check all that apply*)

Complete supporting emission calculations must be included for each potential emission unit selected below.

□ Heater Treater. Include a completed <u>Section OPGP-C Form</u> for each unit.

- ☑ Condensation Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.
- ☑ Water Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.
- □ Internal Combustion Engine. Include a completed <u>Section OPGP-D Form</u> for each unit.
- ☑ Flare. Include a completed <u>Section OPGP-F Form</u> for each unit.
- □ Oil Truck Loading (Section OPGP-B Form)
- ☑ Component Fugitive Emissions (Section OPGP-B Form)
- ☑ Other: Compressor Blowdowns

7. Process/Product Details

Maximum Anticipated Well(s) Production for Facility:

Produced Material	Throughput	Units
Gas		MMCF/day
Oil	15,000	barrels/day
Water	50,000	barrels/day
Other (Specify)		

Maximum Anticipated Throughput for Principal Product(s) (as applicable):

Produced Material	Throughput	Units
Flared Gas	0.43	MMCF/day
Oil	15,000	barrels/day
Water	50,000	barrels/day
Other (Specify)		

8. Zoning

- A. Is the facility (either existing or proposed) located in accordance with any applicable city and/or county zoning ordinances? If no, please explain Yes
- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain.
 No

C. Is the required USGS quadrangle map or equivalent attached?

🗹 Yes 🗆 No

Facility (Agency Interest) Information

Section OPGP - A

9. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

Autress a	nu Loca	ion of Facility Records		
Physical Ad	dress			
1. Street Ad	dress:	5851 Legacy Circle, Suite 1200		
2. City:	Plano		3. State:	ТХ
4. County:	Collin		5. Zip Code	: 75024
6. Telephon	e No.:	972-673-2529	7. Fax No.:	

Facility (Agency Interest) Information

Section OPGP - A

11. Certification

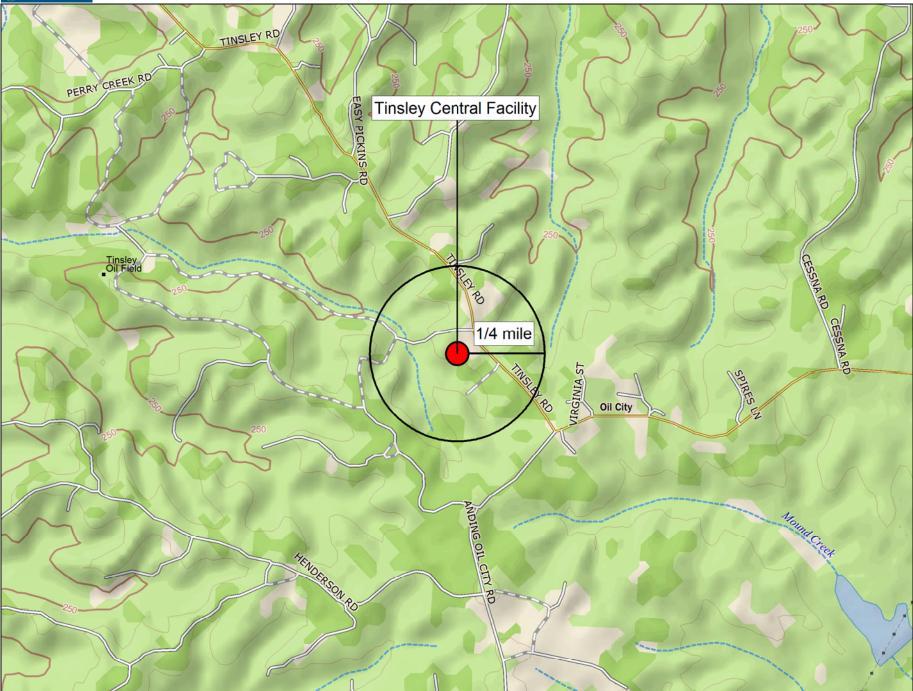
The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

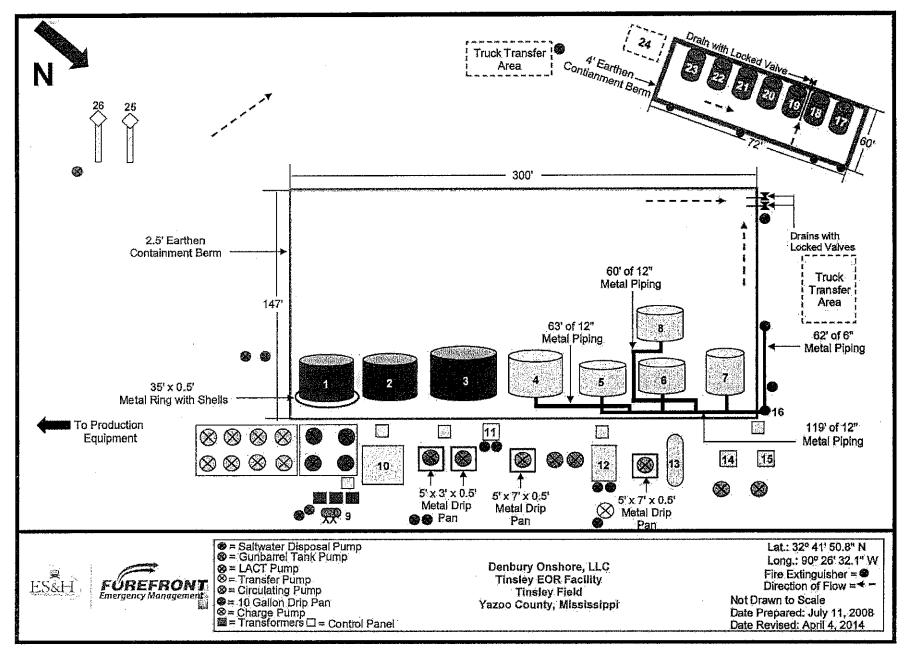
Signature of Responsible Official/DAR

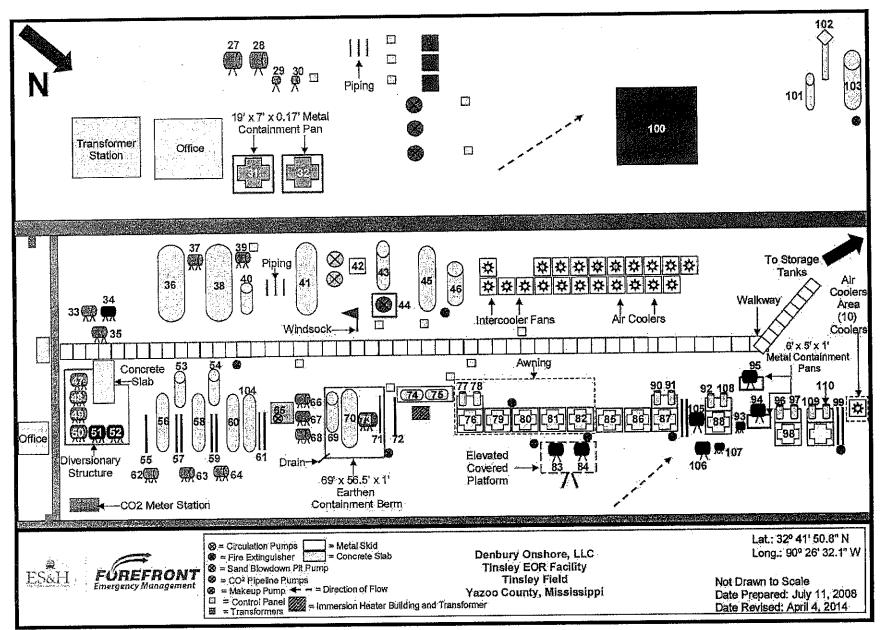
5/29/25

Date


Rusty Shaw Printed Name Director of Regulatory Affairs **Title**

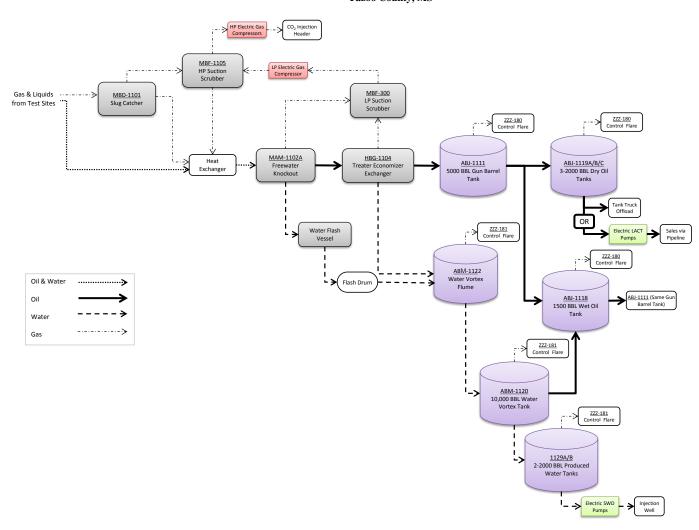
AGOUNT I WE CONTRACT THE CLASS OF A DOD A DOD A


Delorme


, MN (0.9°W)

τN

Scale 1 : 20,000 600 1200 1800 2400 3000 n 180 360 540 720 900 m


Denbury Onshore, LLC Tinsley Field Facilities Spill Prevention, Control, & Countermeasure Plan

Denbury Onshore, LLC Tinsley Field Facilities Spill Prevention, Control, & Countermeasure Plan

Simplified Process Flow Diagram

Denbury Onshore, LLC Tinsley Central Facility Yazoo County, MS

Section OPGP-B.1: Maximum Uncontrolled Emissions (under normal operating conditions) MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section OGP-B.3 and GHGs in Section OGP-B.4. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission Point ID	TSP ¹	(PM)	PM	-10 ¹	PM	-2.5 ¹	S	02	N	Ox	C	0	V	C	TI	RS ²	Le	ead	Total	HAPs
Emission Fomt ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1a-07-GBT-CV	-	-	-	-	-	-	-	-	-	-	-	-	847.82	3713.47	0.07	0.32	-	-	27.94	122.36
1b-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.71	3.10	0.00	0.00	-	-	0.02	0.10
1c-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	7.43	32.56	0.00	0.00	-	-	0.25	1.08
1d-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	7.43	32.56	0.00	0.00	-	-	0.25	1.08
1e-12-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	7.43	32.56	0.00	0.00	-	-	0.25	1.08
2a-07-WVF-CV	-	-	-	-	-	-	-	-	-	-	-	-	12.51	54.79	0.05	0.20	-	-	2.10	9.24
2b-07-WVT-CV	-	-	-	-	-	-	-	-	-	-	-	-	1.94	8.51	0.01	0.03	-	-	0.32	1.44
2d-07-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.98	4.29	0.00	0.02	-	-	0.17	0.72
2e-07-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.98	4.29	0.00	0.02	-	-	0.17	0.72
3-07-F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-07-F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5-07-SBP	-	-	-	-	-	-	-	-	-	-	-	-	0.46	0.17	0.00	0.00	-	-	0.03	0.01
16-07-FE	-	-	-	-	-	-	-	-	-	-	-	-	0.52	2.26	0.00	0.01	-	-	0.02	0.08
17-07-CB	-	-	-	-	-	-	-	-	-	-	-	-	105.43	3.16	0.37	0.01	-	-	5.72	0.17
19-13-CST	-	-	-	-	-	-	-	-	-	-	-	-	1.69	7.39	0.00	0.00	-	-	1.69	7.39
20-13-CST	-	-	-	-	-	-	-	-	-	-	-	-	0.84	3.69	0.00	0.00	-	-	0.84	3.69
26-12-LL	-	-	-	-	-	-	-	-	-	-	-	-	76.78	333.63	0.01	0.03	-	-	2.53	10.99
Totals	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1072.95	4236.43	0.51	0.64	0.00	0.00	42.30	160.15

¹Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section OPGP-B.2: Proposed Allowable Emissions MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

Emission Point	TS	\mathbf{SP}^1	PM	[10 ¹	PM	2.5^{1}	S	02	N	Ox	C	0	V	C	T	RS	Le	ead
ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1a-07-GBT-CV	-	-	-	-	-	-	-	-	-	-	-	-	2.90	12.72	0.00	0.00	-	-
1b-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	0.00	0.00	-	-
1c-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.07	0.32	0.00	0.00	-	-
1d-07-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.07	0.32	0.00	0.00	-	-
1e-12-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.07	0.32	0.00	0.00	-	-
2a-07-WVF-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.13	0.58	0.00	0.00	-	-
2b-07-WVT-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	0.00	0.00	-	-
2d-07-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	0.00	0.00	-	-
2e-07-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	0.00	0.00	-	-
3-07-F	0.11	0.49	0.11	0.49	0.11	0.49	0.01	0.09	3.42	15.00	6.84	29.94	2.64	11.60	0.00	0.00	-	-
4-07-F	0.09	0.38	0.09	0.38	0.09	0.38	0.11	0.49	0.10	0.44	0.85	3.73	1.47	6.42	0.00	0.01	-	-
5-07-SBP	-	-	-	-	-	-	-	-	-	-	-	-	0.46	0.17	0.00	0.00	-	-
16-07-FE	-	-	-	-	-	-	-	-	-	-	-	-	0.52	2.26	0.00	0.01	-	-
17-07-CB	-	-	-	-	-	-	-	-	-	-	-	-	105.43	3.16	0.37	0.01	-	-
19-13-CST	-	-	-	-	-	-	-	-	-	-	-	-	1.69	7.39	0.00	0.00	-	-
20-13-CST	-	-	-	-	-	-	-	-	-	-	-	-	0.84	3.69	0.00	0.00	-	-
26-12-LL	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	0.00	0.00	-	-
Totals	0.20	0.87	0.20	0.87	0.20	0.87	0.12	0.58	3.52	15.44	7.69	33.67	116.33	49.07	0.37	0.03	0.00	0.00

¹Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H_2S), methyl mercaptan (CH_4S), dimethyl sulfide (C_2H_6S), and dimethyl disulfide ($C_2H_6S_2$).

Section OPGP-B.3: Proposed Allowable Hazardous Air Pollutants (HAPs) MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.01 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission Point	Total	HAPs	2,2 Trimethy	2,4- vlpentane	Ben	zene	Ethylb	enzene	Forma	ldehyde	N-He	exane	Tole	iene	Xyl	lene
ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1a-07-GBT-CV	0.10	0.41	0.00	0.00	0.01	0.02	0.00	0.00	-	-	0.08	0.36	0.01	0.03	0.00	0.00
1b-07-OST-CV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00
1c-07-OST-CV	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.01	0.00	0.00	0.00	0.00
1d-07-OST-CV	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.01	0.00	0.00	0.00	0.00
1e-12-OST-CV	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.01	0.00	0.00	0.00	0.00
2a-07-WVF-CV	0.02	0.09	0.00	0.00	0.01	0.02	0.00	0.00	-	-	0.01	0.06	0.00	0.01	0.00	0.00
2b-07-WVT-CV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00
2d-07-WST-CV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00
2e-07-WST-CV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00
3-07-F	0.04	0.18	0.00	0.00	0.00	0.01	0.00	0.00	-	-	0.04	0.16	0.00	0.01	0.00	0.00
4-07-F	0.06	0.25	0.00	0.00	0.01	0.06	0.00	0.00	-	-	0.04	0.16	0.01	0.02	0.00	0.01
5-07-SBP	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	-	-	0.02	0.01	0.00	0.00	0.00	0.00
16-07-FE	0.01	0.09	0.00	0.00	0.00	0.01	0.00	0.00	-	-	0.01	0.06	0.00	0.01	0.00	0.01
17-07-CB	5.72	0.17	0.00	0.00	0.84	0.03	0.05	0.00	-	-	4.04	0.12	0.39	0.01	0.40	0.01
19-13-CST	1.69	7.39	-	-	-	-	-	-	-	-	1.69	7.39	-	-	-	-
20-13-CST	0.84	3.69	-	-	-	-	-	-	-	-	0.84	3.69	-	-	-	-
26-12-LL	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:	8.50	12.31	0.00	0.00	0.87	0.15	0.05	0.00	0.00	0.00	6.77	12.04	0.41	0.09	0.40	0.03

Section OPGP-B.4: Greenhouse Gas Emissions MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr		Total GHG Mass Basis ton/yr ⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs ¹	1	1	265	28	22,800	footnote 4			
1. 07 CDT CV	mass GHG	0.17	0.00	0.00	1.15	0.00	0.00		1.31	
1a-07-GBT-CV	CO ₂ e	0.17	0.00	0.00	32.10	0.00	0.00			32.26
1b-07-OST-CV	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
10-07-081-CV	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
1c-07-OST-CV	mass GHG	0.00	0.00	0.00	0.03	0.00	0.00		0.03	
10-07-031-07	CO ₂ e	0.00	0.00	0.00	0.93	0.00	0.00			0.93
1d-07-OST-CV	mass GHG	0.00	0.00	0.00	0.03	0.00	0.00		0.03	
10-07-051-CV	CO ₂ e	0.00	0.00	0.00	0.93	0.00	0.00			0.93
1e-12-0ST-CV	mass GHG	0.00	0.00	0.00	0.03	0.00	0.00		0.03	
1e-12-051-CV	CO ₂ e	0.00	0.00	0.00	0.93	0.00	0.00			0.93
2a-07-WVF-CV	mass GHG	29.82	0.00	0.00	0.01	0.00	0.00		29.83	
2a-07- w v r - C v	CO ₂ e	29.82	0.00	0.00	0.31	0.00	0.00			30.13
2b-07-WVT-CV	mass GHG	1.49	0.00	0.00	0.00	0.00	0.00		1.49	
20-07-wv1-Cv	CO ₂ e	1.49	0.00	0.00	0.00	0.00	0.00			1.49
2d-07-WST-CV	mass GHG	1.47	0.00	0.00	0.00	0.00	0.00		1.47	
20-07-WSI-CV	CO ₂ e	1.47	0.00	0.00	0.00	0.00	0.00			1.47
2e-07-WST-CV	mass GHG	1.47	0.00	0.00	0.00	0.00	0.00		1.47	
2e-0/-w81-Cv	CO ₂ e	1.47	0.00	0.00	0.00	0.00	0.00			1.47
3-07-F	mass GHG	12705.90	0.00	0.02	0.74	0.00	0.00		12706.66	
3-07-F	CO ₂ e	12705.90	0.00	5.84	20.68	0.00	0.00			12732.42
4-07-F	mass GHG	4476.54	0.00	0.00	0.03	0.00	0.00		4476.57	
4-0/-r	CO ₂ e	4476.54	0.00	0.00	0.93	0.00	0.00			4477.47
5-07-SBP	mass GHG	0.29	0.00	0.00	2.91	0.00	0.00		3.20	
5-0/-SBP	CO ₂ e	0.29	0.00	0.00	81.48	0.00	0.00			81.77
16-07-FE	mass GHG	2.61	0.00	0.00	26.39	0.00	0.00		29.00	
10-07-FE	CO ₂ e	2.61	0.00	0.00	738.90	0.00	0.00			741.51
17-07-CB	mass GHG	5.42	0.00	0.00	54.77	0.00	0.00		60.20	
17-07-CB	CO ₂ e	5.42	0.00	0.00	1533.67	0.00	0.00			1539.09
10 12 CET	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
19-13-CST	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
20.12 CST	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
20-13-CST	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
26 12 14	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
26-12-LL	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
FACILITY	mass GHG	17225.16	0.00	0.02	86.10	0.00	0.00		17311.29	0.00
TOTAL	CO ₂ e	17225.16	0.00	5.84	2410.84	0.00	0.00		0.00	19641.85

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or microorganisms.

³ For **HFCs** or **PFCs** describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a **mass basis** is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO₂ in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Section OPGP-B.5: Stack Parameters and Exit Conditions MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Height Above Inside Diameter Moisture by **Geographic Position** Orientation **Rain Caps Base Elevation** Exit Temp. Velocity **Emission Point** Ground (degrees/minutes/seconds) (H-Horizontal or Dimensions Volume ID V=Vertical) (Yes or No) (ft) (ft) (°F) (ft) (ft/sec) (%) Latitude Longitude 1a-07-GBT-CV V No 24 $300\pm$ 80 0.5 0.04 0 32 41 38.80 90 26 30.36 1b-07-OST-CV V No 24 $300\pm$ 80 0.5 < 0.01 0 32 41 38.80 90 26 30.36 1c-07-OST-CV V 16 $300\pm$ 80 < 0.01 0 32 41 38.80 90 26 30.36 No 0.5 1d-07-OST-CV V No 16 $300\pm$ 80 0.5 < 0.010 32 41 38.80 90 26 30.36 V 1e-12-OST-CV No 16 $300\pm$ 80 0.5 < 0.01 0 32 41 38.80 90 26 30.36 2a-07-WVF-CV V No 42.5 $300\pm$ 80 0.5 0.1 0 32 41 38.80 90 26 30.36 V 2b-07-WVT-CV No 32 $300\pm$ 80 0.5 < 0.010 32 41 38.80 90 26 30.36 2d-07-WST-CV V 24 $300\pm$ 80 0.5 < 0.01 0 32 41 38.80 90 26 30.36 No V 2e-07-WST-CV No 24 $300\pm$ 80 0.5 0 32 41 38.80 90 26 30.36 < 0.01 V No 30 $300\pm$ 1500 0.6 783 0 32 41 38.80 90 26 30.36 3-07-F 4-07-F V No 30 $300\pm$ 1500 0.5 876 0 32 41 38.80 90 26 30.36 V 19-13-CST No 16 $300\pm$ 80 0.1 0.3 0 32 41 38.80 90 26 30.36 V 7 $300\pm$ 80 0.1 0 32 41 38.80 90 26 30.36 20-13-CST No 0.13

Emission Point numbering must be consistent throughout the application package.

¹A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

			Denbury Onshore, LLC Tinsley Central Facility Yazoo County, MS Section B.6: EMISSION POINT SOUR	RCELIST				
	MDEO					Oper	ating Schee	dule:
Emission Point ID:	MDEQ EPN:	Footnote:	Emission Point Description:	Routes To:	Operating Rate/Capacity	Hrs/Day or (Hrs/Yr)	Days/Wk	Wks/Yr
1a-07-GBT-CV	AA-001	a	5000 BBL Gun Barrel Tank-Common Vent (ABJ-1111)	3-07-F	5,475,000 BOPY	24	7	52.143
1b-07-OST-CV	AA-002	a	1500 BBL Wet Oil Tank-Common Vent (ABJ-1118)	3-07-F	18,250 BOPY	24	7	52.143
1c-07-OST-CV	AA-003	а	5000 BBL Dry Oil Tank-Common Vent (ABJ-1119A)	3-07-F	1,825,000 BOPY	24	7	52.143
1d-07-OST-CV	AA-004	a	5000 BBL Dry Oil Tank-Common Vent (ABJ-1119B)	3-07-F	1,825,000 BOPY	24	7	52.143
1e-12-OST-CV	AA-005	а	5000 BBL Dry Oil Tank-Common Vent (ABJ-1119C)	3-07-F	1,825,000 BOPY	24	7	52.143
2a-07-WVF-CV	AA-006	b	Water Vortex Flume-Common Vent (ABM-1122)	4-07-F	18,250,000 BWPY & 18,250 BOPY	24	7	52.143
2b-07-WVT-CV	AA-007	b	9700 BBL Water Vortex Tank-Common Vent (ABM-1120)	4-07-F	18,250,000 BWPY	24	7	52.143
2d-07-WST-CV	AA-008	b	5000 BBL Produced Water Tank-Common Vent (1129A)	4-07-F	9,125,000 BWPY	24	7	52.143
2e-07-WST-CV	AA-009	b	5000 BBL Produced Water Tank-Common Vent (1129B)	4-07-F	9,125,000 BWPY	24	7	52.143
3-07-F	AA-010	с	Control Flare (ZZZ-180)		88.3 MMSCF/Yr	24	7	52.143
4-07-F	AA-011	d	Atmospheric Control Flare (ZZZ-181)		68.5 MMSCF/Yr	24	7	52.143
5-07-SBP	AA-012		Sand Blowdown Pit (ZZZ-130)		50 BBLs/Hr Brine	(730)	-	-
16-07-FE	AA-015		Fugitive Emissions		N/A	24	7	52.143
17-07-CB	AA-016		Compressor Blowdowns		2.75 MMSCF/Yr	(60)	-	-
19-13-CST	AA-018		10-Chemical Storage Tanks (≤13,000 Gallons)		13,000 Gallons/Yr Each	24	7	52.143
20-13-CST	AA-019		50-Chemical Storage Tanks (≤1,000 Gallons)		2,000 Gallons/Yr Each	24	7	52.143
26-12-LL	AA-025	е	Loading Losses-Oil Transfer to Tank Truck	3-07-F	5,475,000 BOPY	(8690)	-	-

Footnotes:

a Vapors from this source are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

b Vapors from this source are routed to the control flare (EPN: 4-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

c Routine emission limits for this source account for vapors from the oil storage tanks (EPNs: 1a-07-GBT-CV through 1e-12-OST-CV) and oil tank truck loading. This source may also combust gas from the facility's pressure release system on an emergency and non-routine basis.

d Routine emission limits for this source account for vapors from the water storage tanks (EPNs: 2a-07-WVF-CV through 2e-07-WST-CV) and assist gas. This source may also combust gas from the facility's pressure release system on an emergency and non-routine basis.

e Vapors associated with the oil tank truck loading process are routed to the control flare (EPN: 3-07-F) for combustion.

		MINOR SOURCE
Ta	nk	Summary Section OPGP-E
1.	En	nission Point Description
	A. B. C. D.	Emission Point Designation (Ref. No.): AA-001 [1a-07-GBT-CV (ABJ-1111)] Product(s) Stored: Produced Oil Status: Image: Operating in the proposed in the propos
2.	Та	nk Data
2.	<u>та</u> А.	Ink Data Tank Specifications: 1. Design capacity 210,000 gallons 2. True vapor pressure at storage temperature: 4.492 psia @ 70.60 °F 3. Maximum true vapor pressure (as defined in §60.111b) 5.204 psia @ 78.86 °F 4. Reid vapor pressure at storage temperature: 6.00 psia @ 70.60 °F 5. Density of product at storage temperature: N/A lb/gal 0°F
		6. Molecular weight of product vapor at storage temp. <u>50</u> lb/lbmol
	В.	Tank Orientation:Image: VerticalImage: Horizontal
	C.	Type of Tank:
		☐ Fixed Roof ☐ External Floating Roof ☐ Internal Floating Roof
		Pressure Variable Vapor Space Other:
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. Vapors from these sources are routed to the control flare (EPN: 3-07-F) for combustion with a combustion efficiency of 98%.
	E.	Closest City: Image: Meridian, MS Tupelo, MS Mobile, AL Image: New Orleans, LA Image: Memphis, TN Image: Baton Rouge, LA
	F.	Is an E&P or similar report described in Condition 5.4(5) of the \square Yes \square No General Permit included for this tank in the Notice of Intent?

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE											
Ta	ınk	Sun	imary		Section OPGP-E							
3.	Ho	orizo	ital Fixed Roof Tank									
	A. B. C. D. E. F. G.	Shell Worl Max Is the Is the	Length: fee Diameter: fee cing Volume: gal mum Throughput: gal tank heated? Yes tank underground? Yes Color/Shade: Aluminum/Specu	t /yr D No No	Aluminum/Diffuse							
			Gray/Light Gray/Medium		Red/Primer							
	H.	Shell	Condition: Good	Poor								
4.	Ve	ertica	l Fixed Roof Tank									
	Α.	Dimo 1. 2. 3. 4. 5. 6. 7. 8.	Insions:Shell Height:24.00Shell Diameter:38.70Maximum Liquid Height:23.00Average Liquid Height:11.50Working Volume:210,000Turnovers per year:1136.10Maximum throughput:5,475,000Is the tank heated?Yes	_ feet _ feet _ feet _ gal BBLs/yr No								
	B.	Shell 1. 2.	Characteristics: Shell Color/Shade: White/White Aluminum Gray/Light Gray/Medi Shell Condition: Good	*	Aluminum/Diffuse Red/Primer							
	C.	Roof 1.	Characteristics: Roof Color/Shade: White/White Aluminum Gray/Light Gray/Medi		Aluminum/Diffuse Red/Primer							
		2.	Roof Condition: 🛛 Good	D Poor								
		3.	Type: 🛛 Cone	Dome Dome								
		4.	Height: <u>1.21</u> feet									

Тя	nk	Sun	nmary	Section OPGP-E
5.			I Floating Roof Tank	
5.	A.		c Characteristics:	Unknown Gunite Lining Aluminum/Diffuse Red/Primer num/Diffuse
			Gray/Light Gray/Medium Red/Pr	imer
		12.	Roof Condition: Good Poor	
	B.	1.	Seal System: Primary Seal:	☐ Vapor-mounted
		2.	Secondary Seal: Shoe-mounted Rim-mounted	☐ None
	C.	Deck 1.	Characteristics: Deck Type: Deck Type: Welded	
		2.	Deck Fitting Category: Typical Detail	
6.	Ex	terna	al Floating Roof Tank	
	A.	Tank 1. 2. 3. 4. 5.	c Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Guni	te Lining

-	C				MINU	K SUUK	CE		0	
		nmar	•			-			S	ection OPGP-E
Ex	tern	al Floa	ating Roof	Tank (continu	ed)				
A.	Tank 6.	Paint (eteristics (cont Color/Shade: White/White	inued):						/Diffuse
	Gray/Light Gray/Medium Red/Prin								Red/Primer	
	7.	Paint (Condition:		Good			Poor		
B.	Roof 1.	Charac Roof	eteristics Гуре:	_ Ponte	oon			Doub	le Deck	
	2.	Roof I	Fitting Catego	ry:		🗌 Туј	pical		De De	etail
C.	Tank 1.		uction and Rin Construction:	n-Seal Sy	stem:	🗌 We	lded		🗌 Ri	veted
	2.		ry Seal: Mechanical S	hoe	🗆 I	.iquid-mou	inted			por-mounted
•	3.		dary Seal None [] Shoe-	mounted		Rim	-moun	ited	U Weather shield
P0	liuta	nt Em	lissions							
A.	Fixed Pollu		Emissions:	Worki	ng Loss (t	ons/yr)	Breat	hing L	loss (tons/yr) Total Emissions (tons/yr)
	VOC	2			452.40*			5.2	24*	457.64*
	being	g routed	l to the control			-	sent the	fixed r	oof emission	ns prior to emissions
B. Floating Roof Emissions: Pollutant ¹ Rim Seal Withdrawal Deck Fitting Deck Seam Landing Total Emissions Loss Loss Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)										
with poll 2. I	h the O lutants i Landing	GP Appl is provid g losses s	ication Instruct ed in the OGP	ions. A list Application nined accor	t of regulat Instructio	ed air pollut ns. e procedures	tants and s in <i>Orga</i>	a link <i>inic Liq</i>	to EPA's list	be listed in accordance of hazardous air <i>Tanks</i> chapter of EPA's

		MINOR SOURCE
Ta	ınk	Summary Section OPGP-E
1.	En	nission Point Description
	A. B. C. D.	Emission Point Designation (Ref. No.): AA-002 [1b-07-OST-CV (ABJ-1118)] Product(s) Stored: Produced Oil Status: Øperating Proposed Under Construction Date of construction, reconstruction, or most recent
		modification (for existing sources) or date of anticipated 2007
2.	Ta	nk Data
	A.	Tank Specifications:1. Design capacity63,000 gallons
		1.Design capacity03,000ganons2.True vapor pressure at storage temperature:4.458psia @70.17°F3.Maximum true vapor pressure (as defined in §60.111b)5.165psia @78.43°F4.Reid vapor pressure at storage temperature:6.00psia @70.17°F5.Density of product at storage temperature:N/Alb/gal70.17°F6.Molecular weight of product vapor at storage temp.50lb/lbmol50lb/lbmol
	B.	Tank Orientation:Image: VerticalImage: Horizontal
	C.	Type of Tank:
		Image: Second stateImage: External Floating RoofImage: Image: Image: Second stateImage: Second state<
		Pressure Variable Vapor Space Other:
	D.	Is the tank equipped with a Vapor Recovery System X Yes No and/or flare? If yes, describe below and include the efficiency of each. Vapors from these sources are routed to the control flare (EPN: 3-07-F) for combustion with a combustion efficiency of 98%.
	E.	Closest City: Jackson, MS Meridian, MS Tupelo, MS Mobile, AL
	F.	New Orleans, LA Memphis, TN Baton Rouge, LA Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent? Yes No

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE											
Ta	ınk	Sun	nmary	Section OPGP-E								
3.	Ho	orizoi	ntal Fixed Roof Tank									
	A. B. C. D. E. F. G.	Shell Work Maxi Is the Is the	I Length: feet I Diameter: feet king Volume: gal imum Throughput: gal/yr e tank heated? Yes No e tank underground? Yes No I Color/Shade: Aluminum/Specular I	Aluminum/Diffuse								
			Gray/Light 🗌 Gray/Medium 🗌	Red/Primer								
	H.	Shell	Condition: Good Poor									
4.	Ve	rtica	l Fixed Roof Tank									
	A.	Dime 1. 2. 3. 4. 5. 6. 7. 8.	ensions:Shell Height:24.00feetShell Diameter:21.50feetMaximum Liquid Height:23.00feetAverage Liquid Height:11.50feetWorking Volume:63,000galTurnovers per year:12.27Maximum throughput:18,250BBLs/yrIs the tank heated?YesNo									
	B.	Shell 1. 2.	Characteristics: Shell Color/Shade: White/White Gray/Light Gray/Light Good Poor	Aluminum/Diffuse Red/Primer								
	C.	Roof 1.		Aluminum/Diffuse Red/Primer								
		2.	Roof Condition: \square Good \square Poor									
		3.	Type: 🛛 Cone 🗌 Dome									
		4.	Height: 0.67 feet									

	MINOR SOURCE	
Sun	nmary	Section OPGP-E
terna	l Floating Roof Tank	
	a Characteristics:	Unknown Gunite Lining Aluminum/Diffuse Red/Primer
10. 11.	External Shell Condition: Good Poor Roof Color/Shade:	num/Diffuse
12.	Roof Condition: Good Poor	
Rim 1. 2.	Seal System: Primary Seal: Mechanical Shoe Secondary Seal: Shoe-mounted	Vapor-mounted None
Deck 1. 2.	Characteristics: Deck Type:	
stern	al Floating Roof Tank	
	a Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition:	te Lining
	terna Tank 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. Rim 1. 2. 2. Xterna Xterna 1. 2. Xterna 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 12. 13. 14. 13. 14. 14. 15. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	2. Tank Volume: gal 3. Turnovers per year: gal/yr 4. Maximum Throughput: gal/yr 5. Number of Columns: gal/yr 6. Self-Supporting Roof? Yes No 7. Effective Column Diameter: 8" Diameter Pipe 8. Internal Shell Condition: 8" Diameter Pipe 8. Internal Shell Color/Shade: 9" White/White Aluminum/Specular 9. External Shell Condition: Good Poor 10. External Shell Condition: Good Poor 11. Roof Color/Shade: Aluminum/Specular Aluminum 12. Roof Condition: Good Poor 13. Rim Seal System: I. Gray/Light Gray/Medium Red/Pri 12. Roof Condition: Good Poor Rim Seal System: I. Primary Seal: Mechanical Shoe Liquid-mounted 2. Secondary Seal: Shoe-mounted Rim-mounted Deck Characteristics: I. Deck Type: Bolted Welded 2.

Ta	nk	Sun	nma	ry								Sect	tion OPGP-E
6.	Ex	terna	al Flo	ating Roof	Tank (conti	nued)						
	A.	6. Paint Color/Shade:							Aluminu	m/Dit	ffuse		
			Gray/Light Gray/Medium Red/Prin									ner	
		7.	Paint	Condition:		Good Poor							
	B. Roof Characteristics 1. Roof Type:												
		2.	Roof	Fitting Catego	ry:			Турі	cal			Detai	1
	 C. Tank Construction and Rim-Seal System: 1. Tank Construction: Welded Riveted 											ed	
	 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 											-mounted	
		3.		ndary Seal None] Shoe	-mount	ed		Rin	n-mour	ited	C	Weather shield
7.	Po	lluta	nt Er	nissions									
	A.			Emissions:		_							
			ıtant ¹		Worki	C	s (tons/yr)		Brea	Ũ	loss (tons/	yr)	Total Emissions (tons/yr)
		VOC	2			1.50	*			1.0	50*		3.10*
	D	being	g route	d to the contro				prese	ent the	e fixed r	roof emiss	ions p	prior to emissions
	B. Poll	lutant ¹	ting Ko	oof Emissions: Rim Seal	Withdra	wal	Deck Fitti	inσ	Deck	Seam	Landing	7	Total Emissions
	101	ratarit		Loss	Los		Loss			oss	Loss ²	>	(tons/yr)
	(tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)												
											-		
													listed in accordance
	with	n the O	GP App	lication Instruct	ions. A lis	st of reg	ulated air p						
				ded in the OGP . should be deterr				lures	in Org	anic Lia	uid Storae	e Tan	ks chapter of EPA's
				ictors. If the roo									

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE													
T٤	ınk	Summary Section OPGP-E												
1.	En	nission Point Description												
	A.	Emission Point Designation (Ref. No.):AA-003, AA-004, & AA-005 [1c-07-OST-CV, 1d-07-OST-CV, & 1e-12-OST-CV (ABJ-1119A, ABJ-1119B, & ABJ-1119C)]												
	В.	B. Product(s) Stored: Produced Oil												
	C.	Status: 🛛 Operating 🗌 Proposed 🗌 Under Construction												
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction:2007												
2.	Ta	nk Data												
	A.	Tank Specifications:												
		1.Design capacity84,000gallons2.True vapor pressure at storage temperature:4.501psia @70.70°F3.Maximum true vapor pressure (as defined in §60.111b)5.213psia @78.96°F4.Reid vapor pressure at storage temperature:6.00psia @70.70°F5.Density of product at storage temperature:N/Alb/gal70.70°F6.Molecular weight of product vapor at storage temp.50lb/lbmol50												
	B.	Tank Orientation:Image: VerticalImage: Horizontal												
	C.	Type of Tank:												
		Fixed Roof External Floating Roof Internal Floating Roof												
		Pressure Variable Vapor Space Other:												
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each. Vapors from these sources are routed to the control flare (EPN: 3-07-F) for combustion with a combustion efficiency of 98%.												
	E.	Closest City:Image: Sector of the sect												
		New Orleans, LA Memphis, TN Baton Rouge, LA												
	F.	Is an E&P or similar report described in Condition 5.4(5) of the Seneral Permit included for this tank in the Notice of Intent?												

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC											
			MINOR SOURCE	Ι								
-			nmary	Section OPGP-E								
3.	Ho	orizo	ntal Fixed Roof Tank									
	A. B. C. D. E. F. G.	Shel Wor Max Is the Is the	Il Length: feet Il Diameter: feet king Volume: gal kimum Throughput: gal/yr te tank heated? Yes te tank underground? Yes Il Color/Shade: Aluminum/Specular	Aluminum/Diffuse								
			Gray/Light 🗌 Gray/Medium	Red/Primer								
	Н.	Shel	ll Condition: 🗌 Good 🗌 Poor									
4.	Ve	rtica	al Fixed Roof Tank									
	A.	Dim 1. 2. 3. 4. 5. 6. 7. 8.	Shell Height:16.00feetShell Diameter:29.75feetMaximum Liquid Height:15.00feetAverage Liquid Height:7.50feetWorking Volume:84,000galTurnovers per year:982.61Maximum throughput:1,825,000BBLs/yrIs the tank heated?YesNo									
	B.	Shel 1. 2.	Il Characteristics: Shell Color/Shade: White/White Gray/Light Gray/Light Shell Condition:	Aluminum/Diffuse Red/Primer								
	C.	Root 1.		Aluminum/Diffuse Red/Primer								
		2.	Roof Condition: 🛛 Good 🗌 Poor									
		3.	Type: 🛛 Cone 🗌 Dome									
		4.	Height: 0.93 feet									

		WIINOK SOUKCE	
Tan	k Sur	nmary	Section OPGP-E
5. I	nterna	al Floating Roof Tank	
А	 Tanl 1. 2. 3. 4. 5. 6. 7. 8. 9. 	k Characteristics: feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Number of Columns: gal/yr Self-Supporting Roof? Yes Self-Supporting Roof? Yes 9"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Dense Rust Light Rust Dense Rust External Shell Color/Shade: Aluminum/Specular	☐ Unknown Gunite Lining Aluminum/Diffuse
		Gray/Light Gray/Medium	Red/Primer
	10. 11.	External Shell Condition:	num/Diffuse
		Gray/Light Gray/Medium Red/Pr	imer
	12.	Roof Condition: Good Poor	
В	B. Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted
	2.	Secondary Seal: Shoe-mounted Rim-mounted	□ None
C	 Dec. 1. 2. 	k Characteristics: Deck Type:	
	2.		
6. E	Extern	al Floating Roof Tank	
А	A. Tanl 1. 2. 3. 4. 5.	k Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Guni	ite Lining

Ta	ınk	Sun	nmai	ry								Sect	tion OPGP-E
6.	Ex	terna	al Flo	ating Roof	Tank (conti	nued)						
	A.	6. Paint Color/Shade:							Aluminu	n/Dif	ffuse		
				Gray/Light Gray/Medium Red/Prin								er	
		7.	Paint	Condition:		Good Door							
	B. Roof Characteristics 1. Roof Type:												
		2.	Roof	Fitting Catego	ry:			Турі	cal			Detail	l
	 C. Tank Construction and Rim-Seal System: 1. Tank Construction: Welded Riveted 											ed	
	 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 											-mounted	
		3.		ndary Seal None] Shoe	-mount	ed		Rin	n-mour	ited		Weather shield
7.	Po	lluta	nt Er	nissions									
	10												
	А.			Emissions:									
		Pollı	ıtant ¹		Worki	ng Los	s (tons/yr)		Brea	thing L	loss (tons/	yr)	Total Emissions (tons/yr)
		VOC	2			29.78	}*			2.7	78*		32.56*
	D	being	g route	d to the control				prese	ent the	e fixed r	coof emiss	ions p	prior to emissions
	B.		ting Ro	of Emissions:	Withdra	wal	Deck Fitt	ina	Deck	Seam	Landing	F	Total Emissions
									(tons/yr)				
LossLossLossLossLoss(tons/yr)(tons/yr)(tons/yr)(tons/yr)(tons/yr)													
	1 4	All regi	ilated a	r pollutants incl	uding haza	rdous ai	r pollutants	s emit	ted fro	om this s	l source show	ld be	listed in accordance
	with	n the O	GP App	lication Instruct	ions. A lis	st of reg	ulated air p						
				ded in the OGP				ures	in Ora	anic Lic	wid Storag	о Тан	ks chapter of EPA's
				ctors. If the roo							uiu siorug	c run	no enapter of ELA S

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE											
T٤	Tank Summary Section OPGP-E										
1.	Emission Point Description										
	A. B.										
	C.	Status: Operating Proposed Under Construction									
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2007									
2.	Tank Data										
	A. B.	Tank Specifications:1.Design capacity $1,000$ gallons2.True vapor pressure at storage temperature: 0.356 psia @3.Maximum true vapor pressure (as defined in §60.111b) 0.470 psia @4.Reid vapor pressure at storage temperature: 6.00 psia @5.Density of product at storage temperature: N/A B/gal 6.Molecular weight of product vapor at storage temp. 18.41 $1b/lbmol$ Tank Orientation:									
	C.	Type of Tank:									
		 ➢ Fixed Roof □ External Floating Roof □ Internal Floating Roof □ Variable Vapor Space □ Other: 									
	 D. Is the tank equipped with a Vapor Recovery System										
	E.	Closest City: Jackson, MS Meridian, MS Tupelo, MS Mobile, AL									
		New Orleans, LAMemphis, TNBaton Rouge, LA									
	F.	Is an E&P or similar report described in Condition 5.4(5) of the Seneral Permit included for this tank in the Notice of Intent?									

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE											
Ta	ınk	Sum	Section OPGP-E								
3.	Ho	Horizontal Fixed Roof Tank									
	A. B. C. D. E. F. G.	Shell Work Maxin Is the Is the	Length: Diameter: ing Volume: mum Throughput: tank heated? tank underground? Color/Shade:		Yes Yes Alun	feet feet gal gal/yr	Aluminum/Diffuse				
			Gray/Light		Gray	/Medium			Red/Primer		
	H.	Shell	Condition:	Good		D Poor	r				
4.	Vertical Fixed Roof Tank										
	A.	 Dimensions: Shell Height: Shell Diameter: Maximum Liquid Height: Average Liquid Height: Working Volume: Turnovers per year: Maximum throughput: Is the tank heated? 				$ \begin{array}{r} $	_s/yr				
	B.	Shell 1. 2.	Characteristics: Shell Color/Shade: White/White Gray/Light Shell Condition:	\boxtimes	Good	Aluminum/Specul Gray/Medium	lar		Aluminum/Diffuse Red/Primer		
	C.	Roof 1.	Characteristics: Roof Color/Shade: White/White Gray/Light			Aluminum/Specul Gray/Medium	lar		Aluminum/Diffuse Red/Primer		
		2.	Roof Condition:	\square	Good		Poor				
		3.	Туре:	\boxtimes	Cone		Dome				
		4.	Height: 0.13		feet						

Ta	nk	Sun	nmary	Section OPGP-E						
5.	5. Internal Floating Roof Tank									
5.	A.		al Floating Root Tank al Floating Root Tank c Characteristics: Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Number of Columns: gal/yr Self-Supporting Roof? Yes Maximum Diameter: No 9"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Dense Rust Light Rust Dense Rust External Shell Color/Shade: Aluminum/Specular Gray/Light Gray/Medium	Unknown Gunite Lining Aluminum/Diffuse Red/Primer						
		10. 11.	External Shell Condition:	num/Diffuse						
			Gray/Light Gray/Medium Red/Pri	imer						
		12.	Roof Condition: Good Poor							
	B.	Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted						
		2.	Secondary Seal: Shoe-mounted Rim-mounted	□ None						
	C.	1.	k Characteristics: Deck Type: Bolted Welded							
		2.	Deck Fitting Category: Typical Detail							
6.	Ex	tern	al Floating Roof Tank							
	А.		c Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition:	te Lining						

Ta	Fank SummarySection OPGP-E													
6.														
	A.		Chara Paint	cteristics (cont Color/Shade: White/White	inued):				Aluminur	inum/Diffuse				
				Gray/Light		Gray/Medium Re					Red/Prim	Red/Primer		
		7.	Paint	Condition:	Good					Poor				
	B.	Roof 1.	f Chara Roof	cteristics Type:	Pontoon Double Deck									
		2. Roof Fitting Category:									1			
	C.	 C. Tank Construction and Rim-Seal System: 1. Tank Construction: Welded Riveted 										ed		
		2. Primary Seal: Image: Mechanical Shoe Image: Liquid-mounted Image: Vapor-mounted									-mounted			
		3. Secondary Seal Image: None Image: Shoe-mounted Image: Shoe-mounted Image: Rim-mounted Image: Weather shield										Weather shield		
7.	Pollutant Emissions													
	A.	A. Fixed Roof Emissions: Pollutant ¹ Working Loss (tons/yr) Breathing Loss (tons/yr) Total Emissions (tons/yr)							Total Emissions (tons/yr)					
		VOC	2		44.32*					0.0	*00	44.32*		
	*It should be noted that the emissions listed above represent the fixed roof emissions prior to emissions being routed to the control flare for combustion.													
	B. Floating Roof Emissions: Pollutant ¹ Rim Seal Withdrawal Deck Fitting Deck Seam Landing Total Emissions													
	1 01	iuuuii		Loss	Los		Loss			oss	Loss ²		(tons/yr)	
				(tons/yr)	(tons/	yr)	(tons/yı	r)	(tor	ns/yr)	(tons/yr))		
	with poll	n the O utants i	GP App is provid	lication Instruct led in the OGP	ions. A lis Applicatio	st of reg n Instrue	ulated air p ctions.	olluta	ants and	l a link	to EPA's li	st of ł	listed in accordance nazardous air <i>ks</i> chapter of EPA's	
	AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".													

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary** Section OPGP-E **Emission Point Description** 1. Emission Point Designation (Ref. No.): AA-007 [2b-07-WVT-CV (ABM-1120)] A. В. Product(s) Stored: Produced Water C. Operating Proposed Under Construction Status: \square D. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated 2007 construction: **Tank Data** 2. Tank Specifications: A. 407,400 1. Design capacity gallons True vapor pressure at storage temperature: 2. 0.370 psia @ ٥F 70.53 3. Maximum true vapor pressure (as defined in §60.111b) 0.488 psia @ 78.79 ٥F 4. Reid vapor pressure at storage temperature: 0.370 psia @ 70.53 ٥F Density of product at storage temperature: N/A lb/gal 5. Molecular weight of product vapor at storage temp. 6. 18.02 lb/lbmol В. Tank Orientation: \square Vertical Horizontal C. Type of Tank: \square Fixed Roof External Floating Roof Internal Floating Roof \square Variable Vapor Space Pressure Other:

 \boxtimes \square Is the tank equipped with a Vapor Recovery System Yes No D. and/or flare? *If yes, describe below and include the efficiency of each.* Vapors from these sources are routed to the control flare (EPN: 4-07-F) for combustion with a combustion efficiency of 98%. E. **Closest City:** Meridian, MS \boxtimes Jackson, MS Tupelo, MS Mobile, AL \Box Memphis, TN \square New Orleans, LA Baton Rouge, LA F. Is an E&P or similar report described in Condition 5.4(5) of the \square Yes 🗌 No General Permit included for this tank in the Notice of Intent?

MS Oil Production General Permit NOI, Section OPGP-E, v. 2019.1

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE									
Ta	nk	Sun	nmary	Section OPGP-E						
3.			ntal Fixed Roof Tank							
	A. B. C. D. E. F. G.	Shell Worl Max: Is the Is the	I Length: feet I Diameter: feet I Diameter: gal king Volume: gal timum Throughput: gal/yr e tank heated? Yes No e tank underground? Yes No 1 Color/Shade: Aluminum/Specular I	Aluminum/Diffuse						
			Gray/Light 🗌 Gray/Medium	Red/Primer						
	H.	Shell	l Condition: 🗌 Good 🗌 Poor							
4.	Ve	rtica	al Fixed Roof Tank							
	Α.	Dime 1. 2. 3. 4. 5. 6. 7. 8.	Shell Height:32.00feetShell Diameter:46.75feetMaximum Liquid Height:31.00feetAverage Liquid Height:15.50feetWorking Volume:407,400galTurnovers per year:1,925.40Maximum throughput:18,250,000BBLs/yrIs the tank heated?YesNo							
	B.	Shell 1. 2.	1 Characteristics: Shell Color/Shade: White/White Gray/Light Gray/Light Shell Condition:	Aluminum/Diffuse Red/Primer						
	C.	Roof 1.	*	Aluminum/Diffuse Red/Primer						
		2.	Roof Condition: \square Good \square Poor							
		3.	Type: 🛛 Cone 🗌 Dome							
		4.	Height: <u>1.46</u> feet							

		WIINOK SOUKCE	
Tan	k Sur	nmary	Section OPGP-E
5. I	nterna	al Floating Roof Tank	
А	 Tanl 1. 2. 3. 4. 5. 6. 7. 8. 9. 	k Characteristics: feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Number of Columns: gal/yr Self-Supporting Roof? Yes Self-Supporting Roof? Yes 9"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Dense Rust Light Rust Dense Rust External Shell Color/Shade: Aluminum/Specular	☐ Unknown Gunite Lining Aluminum/Diffuse
		Gray/Light Gray/Medium	Red/Primer
	10. 11.	External Shell Condition:	num/Diffuse
		Gray/Light Gray/Medium Red/Pr	imer
	12.	Roof Condition: Good Poor	
В	B. Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted
	2.	Secondary Seal: Shoe-mounted Rim-mounted	□ None
C	 Dec. 1. 2. 	k Characteristics: Deck Type:	
	2.		
6. E	Extern	al Floating Roof Tank	
А	A. Tanl 1. 2. 3. 4. 5.	k Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Guni	ite Lining

Тa	MINOR SOURCE Fank Summary Section OPGP-E											
6.				ating Roof	Tank (contii	nued)					-12
	A.		c Chara	cteristics (cont Color/Shade: White/White	inued):					Aluminum	um/Diffuse	
				Gray/Light		Gray/Medium				Red/Primer		
		7.	Paint	Condition:		Good] Poor			
	B.	Roof 1.		cteristics Type:	_ Pont	oon		C] Doub	le Deck		
		2.	Roof	Fitting Catego	ry:			Typical			etail	
	C.	Tank 1.		ruction and Rin Construction:	n-Seal Sy	stem:		Welded	l	🗌 Ri	veted	
	2. Primary Seal: Mechanical Shoe											
		3.	Secor	ndary Seal None] Shoe-	mounte	ed.		Rim-mour	nted	Weather sh	ield
7.	Po	lluta	nt En	nissions								
	A.	Fire	d Doof	Emissions:								
	A.	Pollu		EIIIISSIOIIS.	Worki	ng Loss	s (tons/yr)	B	reathing L	loss (tons/yr	Total Emission (tons/yr)	ns
		VOC	2			8.15*	k		0.	36*	8.51*	
	Ð	being	g route	d to the contro			-	present	the fixed 1	roof emissio	ns prior to emission	ns
	B. Poll	Float lutant ¹	ting Ro	of Emissions: Rim Seal	Withdra	wal	Deck Fitti	ng De	eck Seam	Landing	Total Emission	S
				Loss	Loss	;	Loss	C	Loss	Loss ²	(tons/yr)	-
				(tons/yr)	(tons/y	/r)	(tons/yr)) (tons/yr)	(tons/yr)		
											be listed in accordan of hazardous air	ce
	poll	utants i	is provi	ded in the OGP	Application	1 Instruc	tions.					
				should be detern ctors. If the roo						uid Storage	Tanks chapter of EPA	Ś

Ta	nk	Summary	Section OPGP-E
1.	En	nission Point Description	
	A.	Emission Point Designation (Ref. No.): AA-008 & AA-009 [2d-07-WST-CV & 1129A & ABJ-1129B)]	z 2e-07-WST-CV (ABJ-
	B.	Product(s) Stored: Produced Water	
	C.	Status: \square Operating \square Proposed \square Un	nder Construction
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction:2007	
2.	Ta	nk Data	
	A.	Tank Specifications:1. Design capacity210,000 gallor	ns
		2.True vapor pressure at storage temperature:0.371psia (3.Maximum true vapor pressure (as defined in §60.111b)0.489psia (4.Reid vapor pressure at storage temperature:0.371psia (5.Density of product at storage temperature:N/Alb/ga6.Molecular weight of product vapor at storage temp.18.02lb/lbr	$ \begin{array}{c} a) & & 70.60 & {}^{\circ}F \\ \hline a) & & 78.86 & {}^{\circ}F \\ \hline a) & & 70.60 & {}^{\circ}F \\ \end{array} $
	B.	Tank Orientation:Image: VerticalImage: Horizont	al
	C.	Type of Tank:	
		Image: Second stateImage: External Floating RoofImage: Internal Floating Roof	l Floating Roof
		PressureVariable Vapor SpaceOther:	
	D.	Is the tank equipped with a Vapor Recovery System Yes and/or flare? <i>If yes, describe below and include the efficiency of each.</i> Vapors from these sources are routed to the control flare (EPN: 4-07-F) for combu efficiency of 98%.	□ No
	E.	Closest City: Jackson, MS Meridian, MS Tupelo, MS	Mobile, AL
		New Orleans, LAMemphis, TNBaton Rouge, L	А
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?	Ves 🗌 No

N	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE									
Ta	ınk	Sun	nmary		Section OPGP-E					
3.	Ho	orizo	ntal Fixed Roof Tank							
	A. B. C. D. E. F. G.	Shell Worl Max Is the Is the	Length: feet Diameter: feet cing Volume: gal mum Throughput: gal/yr e tank heated? Yes e tank underground? Yes Color/Shade: Aluminum/Specular	No No	Aluminum/Diffuse					
			Gray/Light 🗌 Gray/Medium		Red/Primer					
	H.	Shell	Condition: Good Poor							
4.	Ve	rtica	l Fixed Roof Tank							
	Α.	Dimo 1. 2. 3. 4. 5. 6. 7. 8.	ensions:Shell Height:24.00feetShell Diameter:38.70feetMaximum Liquid Height:23.00feetAverage Liquid Height:11.50feetWorking Volume:210,000galTurnovers per year:1,893.50Maximum throughput:9,125,000BBLs/Is the tank heated?YesNo	/yr						
	B.	Shell 1. 2.	Characteristics: Shell Color/Shade: White/White Aluminum/Specular Gray/Light Gray/Medium Shell Condition: Good Poor		Aluminum/Diffuse Red/Primer					
	C.	Roof 1.	Characteristics: Roof Color/Shade: White/White Gray/Light Gray/Light		Aluminum/Diffuse Red/Primer					
		2.	Roof Condition: \boxtimes Good \square F	Poor						
		3.	Type:	Dome						
		4.	Height: <u>1.21</u> feet							

		WIINOK SOUKCE	
Tan	k Sur	nmary	Section OPGP-E
5. I	nterna	al Floating Roof Tank	
А	 Tanl 1. 2. 3. 4. 5. 6. 7. 8. 9. 	k Characteristics: feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Number of Columns: gal/yr Self-Supporting Roof? Yes Self-Supporting Roof? Yes 9"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Dense Rust Light Rust Dense Rust External Shell Color/Shade: Aluminum/Specular	☐ Unknown Gunite Lining Aluminum/Diffuse
		Gray/Light Gray/Medium	Red/Primer
	10. 11.	External Shell Condition:	num/Diffuse
		Gray/Light Gray/Medium Red/Pr	imer
	12.	Roof Condition: Good Poor	
В	B. Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted
	2.	Secondary Seal: Shoe-mounted Rim-mounted	□ None
C	 Dec. 1. 2. 	k Characteristics: Deck Type:	
	2.		
6. E	Extern	al Floating Roof Tank	
А	A. Tanl 1. 2. 3. 4. 5.	k Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Guni	ite Lining

Та	MINOR SOURCE Fank Summary Section OPGP-E											
6 .				<u>y</u> ating Roof	'Tank (cont	inued)			5		
0.	LA			ting Root		Cont	mucuj					
	A.			teristics (cont Color/Shade:	inued):							
		6.		White/White		Alum	ninum/Specula	r		Aluminum	Diffuse	
				Grou/Light		Gray/Medium Red/Prir						
				Gray/Light		Gray				Red/Primer		
		7.	Paint C	Condition:		Good	1		Poor			
	B.	Roof 1.	Charac Roof 7		Pon ⁻	toon			Doub	le Deck		
		2.	Roof F	Fitting Catego	ry:		П Ту	pical		De De	etail	
	C.	Tank 1.		uction and Rin Construction:	m-Seal Sy	ystem:	□ We	elded		🗌 Ri	veted	
	 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 											
		3.		dary Seal None] Shoe	-moun	ted] Rin	n-moun	ited	U Weat	her shield
-	D	114										
7.	P ₀	nuta	nt Em	issions								
7.				issions								
7.	Ро .	Fixe	d Roof I	Emissions	Work	ing Lo	ss (tons/vr)	Brea	thing I	oss (tons/vr) Total Fr	nissions
1.		Fixe Pollu	d Roof I 1tant ¹		Work	C	ss (tons/yr)	Brea	Ũ	oss (tons/yr	(tons	s/yr)
1.		Fixe	d Roof I 1tant ¹		Work	ing Los 4.09	· · ·	Brea	Ũ	oss (tons/yr 20*	/	s/yr)
7.		Fixe Pollu	d Roof I 1tant ¹		Work	C	· · ·	Brea	Ũ	· ·	(tons	s/yr)
7.		Fixed Pollu VOC	d Roof I Itant ¹	Emissions:	e emissio	4.09 ns liste	9* ed above repre		0.2	20*	(tons 4.2	s/yr) 9*
7.	А. В.	Fixed Pollu VOC *It su being Float	d Roof I Itant ¹	Emissions: e noted that th t to the contro of Emissions:	e emissio l flare for	4.09 ns liste · combi	9* ed above repre ustion.	sent the	0.2 e fixed r	20*	(tons 4.2	s/yr) 9* nissions
7.	А. В.	Fixed Pollu VOC *It su being	d Roof I Itant ¹	Emissions: e noted that th to the contro	e emissio	4.09 ns liste combi	9* ed above repre	sent the	0.2	20*	(tons 4.2 ns prior to en Total Em	s/yr) 9* nissions
7.	А. В.	Fixed Pollu VOC *It su being Float	d Roof I Itant ¹	Emissions: e noted that th t to the contro of Emissions: Rim Seal	e emissio l flare for Withdra	4.09 ns liste · combi	9* ed above repre ustion. Deck Fitting	sent the	0.2 e fixed r	20*	(tons 4.2	s/yr) 9* nissions
7.	А. В.	Fixed Pollu VOC *It su being Float	d Roof I Itant ¹	Emissions: e noted that th t to the contro of Emissions: Rim Seal Loss	e emissio l flare for Withdra Los	4.09 ns liste · combi	9* ed above repre ustion. Deck Fitting Loss	sent the	0.2 e fixed r c Seam oss	20* roof emission Landing Loss ²	(tons 4.2 ns prior to en Total Em	s/yr) 9* nissions
7.	А. В.	Fixed Pollu VOC *It su being Float	d Roof I Itant ¹	Emissions: e noted that th t to the contro of Emissions: Rim Seal Loss	e emissio l flare for Withdra Los	4.09 ns liste · combi	9* ed above repre ustion. Deck Fitting Loss	sent the	0.2 e fixed r c Seam oss	20* roof emission Landing Loss ²	(tons 4.2 ns prior to en Total Em	s/yr) 9* nissions
7.	A. B. Poll	Fixed Pollu VOC *It st being Float lutant ¹	d Roof H Itant ¹	Emissions: e noted that the to the contro of Emissions: Rim Seal Loss (tons/yr) pollutants incl	e emissio l flare for Withdra Loss (tons/ uding haza	4.09 ns liste combi awal s yr) ardous a	9* ed above repre ustion. Deck Fitting Loss (tons/yr) air pollutants em	Deck	0.2 e fixed r c Seam oss ns/yr)	20* coof emission Landing Loss ² (tons/yr) ource should	tions 4.2 (tons ns prior to en Total Em (tons, be listed in ac	s/yr) 9* nissions nissions /yr) cordance
7.	A. B. Poll	Fixed Pollu VOC *It st being Float lutant ¹	d Roof H Itant ¹	Emissions: e noted that the to the contro of Emissions: Rim Seal Loss (tons/yr) pollutants incl	e emissio l flare for Withdra Loss (tons/ uding haza ions. A lis	4.09 ns liste c combinations awal s yr) ardous a st of reg	9* ed above repre ustion. Deck Fitting Loss (tons/yr) air pollutants en gulated air pollu	Deck	0.2 e fixed r c Seam oss ns/yr)	20* coof emission Landing Loss ² (tons/yr) ource should	tions 4.2 (tons ns prior to en Total Em (tons, be listed in ac	s/yr) 9* nissions nissions /yr) cordance

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRO	
PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMEN	T AT A SYNTHETIC
MINOR SOURCE	
Tank Summary	Section OPGP-E

1.	En	mission Point Description									
	A. B.	Emission Point Designation (Ref. No.): AA-018 [19-13-CST]* *It should be noted that this emission point source accounts for approximately 10 organic chemical blend storage tanks for ease of permitting. In addition, the emissions associated with these sources were aggregated and assumes a maximum capacity for conservative purposes. Product(s) Stored: Organic Chemical Blend (assumes 100% N-Hexane as worst case)									
	C.	Status: Operating Proposed Under Construction									
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2013									
2.	Ta	nk Data									
	A.	Tank Specifications:									
		1. Design capacity 13,000 gallons 2. True vapor pressure at storage temperature: 2.601 psia @ 72.16 3. Maximum true vapor pressure (as defined in §60.111b) 3.319 psia @ 82.29 4. Reid vapor pressure at storage temperature: 2.601 psia @ 72.16 5. Density of product at storage temperature: N/A lb/gal 72.16 6. Molecular weight of product vapor at storage temp. 86.18 lb/lbmol									
	В.	Tank Orientation: 🗌 Vertical 🛛 Horizontal									
	C.	Type of Tank:									
		☐ Fixed Roof ☐ External Floating Roof ☐ Internal Floating Roof									
		Pressure Variable Vapor Space Other:									
	D.	Is the tank equipped with a Vapor Recovery System Yes No and/or flare? If yes, describe below and include the efficiency of each.									
	E.	Closest City:									
		New Orleans, LAMemphis, TNBaton Rouge, LA									
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?									

Ν	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC										
Ta		C			M	INOR SOURCE			Section OPCD E		
1 a 3 .			1mary 1tal Fixed Roof 7	ank					Section OPGP-E		
	A. B. C. D. E. F. G.	Shell Shell Worl Maxi Is the Is the	Length: Diameter: king Volume: mum Throughput: tank heated? tank underground? Color/Shade:		16.0 11.8 13,00 130,0 Yes Yes Alur	80 feet 00 gal			Aluminum/Diffuse		
			Gray/Light		Gray	/Medium		\boxtimes	Red/Primer		
	H.	Shell	Condition: \square	Good		D Poo	or				
4.	Ve	rtica	l Fixed Roof Tar	ık							
	А.	Dime 1. 2. 3. 4. 5. 6. 7. 8.	ensions: Shell Height: Shell Diameter: Maximum Liquid Heig Average Liquid Heig Working Volume: Turnovers per year: Maximum throughpu Is the tank heated?	ht:	Yes		t t t				
	B.	Shell 1. 2.	Characteristics: Shell Color/Shade: White/White Gray/Light Shell Condition:		Good	Aluminum/Specu Gray/Medium D Poor			Aluminum/Diffuse Red/Primer		
	C.	Roof 1.	Characteristics: Roof Color/Shade: White/White Gray/Light			Aluminum/Specu Gray/Medium	ılar		Aluminum/Diffuse Red/Primer		
		2.	Roof Condition:		Good		Poor				
		3.	Туре:		Cone		Dome				
		4.	Height:		feet						

			MINOR SOURCE			
Ta	nk	Sun	nmary	Section OPGP-E		
5.	Int	terna	al Floating Roof Tank			
5.	A.		Characteristics: Diameter: feet Tank Volume: gal Turnovers per year: Maximum Throughput: Maximum Throughput: gal/yr Number of Columns: Self-Supporting Roof? Yes No Effective Column Diameter: 9"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Light Rust Dense Rust External Shell Color/Shade: White/White	Unknown Gunite Lining Aluminum/Diffuse Red/Primer		
		10. 11.		um/Diffuse		
			Gray/Light Gray/Medium Red/Pri	mer		
		12.	Roof Condition: Good Poor			
	B.	Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted		
		2.	Secondary Seal: Shoe-mounted Rim-mounted	None		
	C.	1.	k Characteristics: Deck Type:			
		2.	Deck Fitting Category:			
6.	Ex	terna	al Floating Roof Tank			
	A.	Tank 1. 2. 3. 4. 5.	Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Gunit	te Lining		

	MINOK SOUKCE											
Ta	nk	Sun	nmary	7						Se	ection	OPGP-E
6.	Ex	terna	al Float	ting Roof	Tank (cont	inued)					
	A.		eristics (cont olor/Shade: /hite/White							um/Diffuse		
			G	ray/Light		Gray	/Medium			Red/Primer		
		7.	Paint Co	ondition:		Good	1		Poor			
	B.	Roof 1. 2.	Characte Roof Ty Roof Fi	ype: [Pont	toon			Doubl	e Deck	etail	
	2. Roof Fitting Category: Typical C. Tank Construction and Rim-Seal System: 1. Tank Construction: Welded								veted			
		2.	Primary	/ Seal: /lechanical S	hoe		Liquid-mou	inted		🗌 Va	por-mou	nted
		3.		ary Seal None] Shoe-	-moun	ted] Rir	n-moun	ted		Weather shield
7.	Po	lluta	nt Emi	ssions								
	A.			missions:	XX 7 1	- T		D	.1 · · ·			
		Pollu	itant		W OrK1	ng Lo	ss (tons/yr)	Brea	thing L	oss (tons/yr) lot	al Emissions (tons/yr)
		VOC	1			0.3	34		7.	05		7.39
	B.	Float	ting Roof	f Emissions:								
	Pollutant ¹ Rim Seal Loss (tons/yr)			Loss	Loss Loss			x Seam loss ns/yr)	Landing Loss ² (tons/yr)		ll Emissions (tons/yr)	
				1				+				

1. All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

2. Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL
PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC
MINOR SOURCE

Та	nk	Summary S	ection OPGP-E
1.	En	nission Point Description	
	A. B.	Emission Point Designation (Ref. No.): <u>AA-019 [20-13-CST]*</u> *It should be noted that this emission point source accounts for approximately 50 organic chemical blend storage In addition, the emissions associated with these sources were aggregated and assumes a maximum capacity for c Product(s) Stored: <u>Organic Chemical Blend</u> (assumes 100% N-Hexane as worst	onservative purposes.
	C.	Status:	r Construction
	D.	Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction:2013	
2.	Ta	nnk Data	
	А. В.	Tank Specifications:1.Design capacity1,000gallons2.True vapor pressure at storage temperature:2.599psia @3.Maximum true vapor pressure (as defined in §60.111b)3.317psia @4.Reid vapor pressure at storage temperature:2.599psia @5.Density of product at storage temperature:N/Alb/gal6.Molecular weight of product vapor at storage temp.86.18lb/lbmodTank Orientation:Vertical	72.13 °F 82.25 °F 72.13 °F
	C.	Type of Tank:	
		Image: Size of the systemImage: Si	loating Roof
	D.	Is the tank equipped with a Vapor Recovery System and/or flare? If yes, describe below and include the efficiency of each.	🖾 No
	E.	Closest City: Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Meridian, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian, Meridian, MS Image: Tupelo, MS Image: Tupelo, MS Image: Meridian,	🗌 Mobile, AL
	F.	Is an E&P or similar report described in Condition 5.4(5) of the Second Yes General Permit included for this tank in the Notice of Intent?	🗌 No

Ν	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC									
	MINOR SOURCE									
			nmary	Section OPGP-E						
3.	Ho	orizo:	ntal Fixed Roof	<u>lank</u>						
	A. B. C. D. E. F. G.	Shel Wor Max Is th Is th	l Length: l Diameter: king Volume: imum Throughput: e tank heated? e tank underground? l Color/Shade:		7.00 5.00 1,00 100,0 Yes Yes Alur	0 feet 0 gal			Aluminum/Diffuse	
			Gray/Light		Gray	/Medium		\boxtimes	Red/Primer	
	H.	Shel	l Condition:	Good		D Poo	or			
4.	Ve	rtica	l Fixed Roof Tai	ık						
	A.	Dim 1. 2. 3. 4. 5. 6. 7. 8.	ensions: Shell Height: Shell Diameter: Maximum Liquid Heig Average Liquid Heig Working Volume: Turnovers per year: Maximum throughpu Is the tank heated?	ght:	Yes		t t			
	B.	Shel 1. 2.	Characteristics: Shell Color/Shade: White/White Gray/Light Shell Condition:		Good	Aluminum/Specu Gray/Medium	ılar		Aluminum/Diffuse Red/Primer	
	C.	Root 1.	Characteristics: Roof Color/Shade: White/White Gray/Light			Aluminum/Specu Gray/Medium			Aluminum/Diffuse Red/Primer	
		2.	Roof Condition:		Good		Poor			
		3. 4.	Type: Height:		Cone feet		Dome			
1										

MINUR SOURCE								
Sun	nmary	Section OPGP-E						
terna	l Floating Roof Tank							
	a Characteristics:	Unknown Gunite Lining Aluminum/Diffuse Red/Primer						
10. 11.	External Shell Condition: Good Poor Roof Color/Shade:	num/Diffuse						
12.	Roof Condition: Good Poor							
Rim 1. 2.	Seal System: Primary Seal: Mechanical Shoe Secondary Seal: Shoe-mounted	Vapor-mounted None						
Deck 1. 2.	Characteristics: Deck Type:							
stern	al Floating Roof Tank							
	a Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition:	te Lining						
	terna Tank 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. Rim 1. 2. 2. Xterna Xterna 1. 2. Xterna 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 12. 13. 14. 13. 14. 14. 15. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	2. Tank Volume: gal 3. Turnovers per year: gal/yr 4. Maximum Throughput: gal/yr 5. Number of Columns: gal/yr 6. Self-Supporting Roof? Yes No 7. Effective Column Diameter: 8" Diameter Pipe 8. Internal Shell Condition: 8" Diameter Pipe 8. Internal Shell Color/Shade: 9" White/White Aluminum/Specular 9" A7" 9. External Shell Condition: Good Poor 10. External Shell Condition: Good Poor 11. Roof Color/Shade: Aluminum/Specular Aluminum 12. Roof Condition: Good Poor 13. Rim Seal System: 1. Good Poor 14. Primary Seal: Mechanical Shoe Liquid-mounted 2. Secondary Seal: Shoe-mounted Rim-mounted 2. Secondary Seal: Shoe-mounted Rim-mounted 2. Deck Fitting Category: Typical Detail Cternal Floating Roof Tank gal						

	MINOR SOURCE											
Ta	Tank SummarySection OPGP-E											
6.	. External Floating Roof Tank (continued)											
	 A. Tank Characteristics (continued): 6. Paint Color/Shade: White/White Aluminum/Specular Alumir 						Aluminum	/Diffu	se			
				ray/Light		Gray/Medium			Red/Primer			
		7.		ondition:		Good			Poor			
	B.	Roof 1. 2.	Characte Roof Ty Roof Fi		Pont	toon	🗆 Туј		Doubl	e Deck	etail	
	C. Tank Construction and Rim-Seal System: 1. Tank Construction: Welded Riveted											
		2. 3.	Second	Aechanical S ary Seal			Liquid-mou				ipor-m	nounted
7	Del	11	nt Emi			-moun		R1n	n-moun	ted		Weather shield
7.	F 0	iiuta	псеши	18810118								
	A.	Fixed Pollu		missions:	Worki	ing Lo	oss (tons/yr)	Brea	thing L	oss (tons/yı	;)]]	Total Emissions (tons/yr)
	VOC 0.12				3.	57		3.69				
	B. Floating Roof Emissions:											
	Poll	utant ¹	-	Rim Seal Loss (tons/yr)	Withdra Loss (tons/y	5	Deck Fitting Loss (tons/yr)	L	t Seam oss ns/yr)	Landing Loss ² (tons/yr)	Т	otal Emissions (tons/yr)

1. All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

2. Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

	MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC									
		MINOR SOURCE								
Fla		Section OPGP-F								
1.	Eq	uipment Description								
	A.	Emission Point Designation (Ref. No.): AA-010 [3-07-F (ZZZ-180)]								
	B.	Equipment Description (include the process(es) that the flare controls emissions from): Control flare to combust emissions from oil storage tanks (EPNs: 1a-07-GBT-CV through 1e-12-OST-CV) and loading losses (EPN: 26-12-LL).								
	C.	Manufacturer: Unknown D. Model: Unknown								
	E.	Status: Operating Proposed Under Construction								
	F.	Requesting a federally enforceable condition to route tank emissions to the flare.								
2.	Sys	tem Data								
	A.	Efficiency:98%Controlling the following pollutant(s):VOC, HAPsEfficiency:%Controlling the following pollutant(s):								
	B.	Flare Data (if applicable): 1. Flare type: \vee Non-assisted \vee Other:								
		2. Net heating value of combusted gas: <u>2510</u> Btu/scf								
		3. Design exit velocity: 784 ft/sec								
		4. System: 🛛 Auto-ignitor 🖾 Continuous Flame								
		5. Is the presence of a flare pilot flame monitored? \square Yes \square No								
		If yes, please describe the monitoring: The presence of the flare pilot flame is continuously monitored by use of a thermocouple.*								
		6. Is the auto-ignitor system monitored? Xes No								
		If yes, please describe the monitoring: The flare is equipped with an auto-ignitor.*								

^{*}Denbury will maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. Denbury will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare.

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE								
Fla	re	MINOK SOUKCE	Section OPGP-F					
1.		uipment Description						
	А.	Emission Point Designation (Ref. No.): AA-011 [4-07-F (ZZZ-181)]					
	B.	Equipment Description (include the process(es) that the flare controls from): Control flare to combust emissions from water storage tanks (CV through 2e-07-WST-CV).						
	C.	Manufacturer: Unknown D. Model: Unkn	iown					
	E.	Status: Operating Proposed Under C	Construction					
	F.	Requesting a federally enforceable condition to route tank emission	ons to the flare.					
2.		stem Data						
	A.	Efficiency:98%Controlling the following pollutantEfficiency:%Controlling the following pollutantReason for different efficiency:	t(s):					
	B.	Flare Data (if applicable):						
		1. Flare type: Non-assisted Steam-assisted Other:	Air-assisted					
		2. Net heating value of combusted gas: <u>202</u> Btu/scf						
		3. Design exit velocity: <u>876</u> ft/sec						
		4. System: \square Auto-ignitor \square Contin	nuous Flame					
		5. Is the presence of a flare pilot flame monitored? \square Yes	□ No					
		If yes, please describe the monitoring: The presence of the continuously monitor thermocouple.*	1					
		6. Is the auto-ignitor system monitored? Xes	☐ No					
		If yes, please describe the monitoring: <u>The flare is equipped w</u>	/ith an auto-ignitor.*					

^{*}Denbury will maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. Denbury will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare.

Compliance Plan

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

Section OPGP-G

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
3-07-F <i>Control Flare</i> 4-07-F <i>Control Flare</i>	11 Miss. Admin. Code Pt. 2, R.1.4.B(2)	2007	2007	N/A
3-07-F <i>Control Flare</i> 4-07-F <i>Control Flare</i>	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	2007	2007	N/A
3-07-F <i>Control Flare</i> 4-07-F <i>Control Flare</i>	11 Miss. Admin. Code Pt. 2, R.2.2.B(11).	2007	2007	N/A
5-07-SBP Sand Blowdown Pit	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	2007	2007	N/A
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa)	Modified After 9/18/2015	Modified After 9/18/2015	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
3-07-F <i>Control Flare</i> 4-07-F <i>Control Flare</i>	11 Miss. Admin. Code Pt. 2, R.1.4.B(2)	H_2S	1 grain H ₂ S per 100 standard cubic feet (1 gr/100 scf)	Recordkeeping of H ₂ S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.
3-07-F <i>Control Flare</i> 4-07-F <i>Control Flare</i>	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	VOC, HAPs	Flare Operating Requirements	The flare shall be operated at all times when emissions may be vented to it. The flare is anticipated to provide a significant reduction in hydrocarbon emissions. Based on manufacturer's data, a minimum of 98% reduction can be expected. It should also be noted that the facility will operate the flare such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
3-07-F Control Flare 4-07-F Control Flare	11 Miss. Admin. Code Pt. 2, R.2.2.B(11).	VOC, HAPs	Monitoring and recordkeeping	Denbury shall maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. Denbury will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare. The flare shall be operated with no visible emissions as determined by EPA Method 22, except for periods not to exceed a total of five (5) minutes during any two (2) consecutive hours. Records of all visual observations/tests and corrective action shall be maintained.
5-07-SBP Sand Blowdown Pit	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	VOC	Sand Blowdown Operating Limits	The sand blowdown pit will operate no more than 730 hours during a 12-month period.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5365a(i) 40 CFR 60.5397a 40 CFR 60.5397a(a)	VOC	 Owners and operators of an affected facility, which is the collection of fugitive emission components at a well site that commenced construction or modification after 9/18/2015 and on or before 12/6/2022, must reduce GHG & VOC emissions by complying with paragraphs (a) through (j) of this section. Owners and operators must: 1) Monitor all fugitive emission components, as defined in §60.5430a, in accordance with §60.5397a(b)-(g); 2) Repair all sources of fugitive emissions (defined as any visible emission from a fugitive emissions component observed using optical gas imaging or an instrument reading of 500 parts per million (ppm) or greater using Method 21 of appendix A-7 to this part) in accordance with §60.5397a(i) and report in accordance with §60.5397a(j). 	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5397a(b) 40 CFR 60.5397a(c) 40 CFR 60.5397a(d) 40 CFR 60.5397a(e) 40 CFR 60.5397a(f)(1) 40 CFR 60.5397a(g)(1)	VOC	 Requirements that specify monitoring: Develop an emissions monitoring plan that covers the collection of fugitive emissions components at the affected well site(s) and compressor station(s) within each company-defined area in accordance with paragraphs (c) & (d). Fugitive emissions monitoring plans must include the elements specified in paragraphs (c)(1) through (8), at a minimum. Each fugitive emissions monitoring plan must include the elements specified in paragraphs (c)(1) through (8), at a minimum. Each fugitive emissions monitoring plan must include the elements specified in paragraphs (d)(1) through (3), at a minimum, as applicable. Each monitoring survey shall observe each fugitive emissions component, as defined in §60.5430a, for fugitive emissions. Conduct an initial monitoring survey within 90 days of the startup of production, as defined in §60.5430a, for each collection of fugitive emissions components at a new well site or by June 3, 2017, whichever is later. For a modified well site, conduct an initial monitoring survey within 90 days of the first day of production after the modification, or by June 3, 2017, whichever is later. Subsequent monitoring surveys must be conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least and no more than 7 months apart. 	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5397a(g)(3) 40 CFR 60.5397a(g)(4) 40 CFR 60.5397a(g)(5) 40 CFR 60.5397a(h)	VOC	Fugitive emissions components that cannot be monitored without elevating the monitoring personnel more than 2 meters above the surface may be designated as difficult-to-monitor and must meet the specifications of $(0.5397a(g)(3)(i))$ through (iv). Fugitive emissions components that cannot be monitored because monitoring personnel would be exposed to immediate danger while conducted a monitoring survey may be designated as unsafe-to-monitor and must meet the specifications of (0.5397a(g)(4)(i)) through (iv). An affected facility is no longer required to comply with the requirements of paragraph (g)(1) of this section when the owner or operator removes all major production and processing equipment, as defined in $(0.5430a)$, such that the well site becomes a wellhead only well site. If any major production and processing equipment is subsequently added to the well site, then the owner or operator must comply with the requirements in paragraphs (f)(1) and (g)(1) of this section. Each identified source of fugitive emissions shall be repaired, as defined in $(0.5430a)$, in accordance with paragraphs (h)(1) & (2) of this section.	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5397a(h)(3) 40 CFR 60.5397a(h)(3)(i) 40 CFR 60.5397a(h)(3)(ii)	VOC	 Delay of repair will be allowed if the conditions in paragraphs (h)(3)(i) or (ii) of this section are met. If the repair is technically infeasible, would require a vent blowdown, a compressor station shutdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair must be completed during the next scheduled compressor station shutdown for maintenance, scheduled well shutdown, or within 2 years of detecting the fugitive emissions, whichever is earliest. For purposes of this paragraph (h)(3), a vent blowdown is the opening of one or more blowdown valves to depressurize major production and processing equipment, other than a storage vessel. If the repair requires replacement of a fugitive emissions component or a part thereof, but the replacement cannot be acquired and installed within the repair timelines specified in paragraphs (h)(1) and (2) of this section due to either of the conditions specified in paragraphs (h)(3)(ii)(A) or (B) of this section, the repair must be completed in accordance with ş 60.5420a(c)(15)(vii)(1). (A) Valve assembly supplies had been sufficiently stocked but are depleted at the time of the required repair; (B) A replacement fugitive emissions component or a part thereof near storage. (C) The required replacement must be ordered no later than 10 calendar days after the first attempt at repair. The repair must be completed as soon as practicable, but no later than 30 calendar days after the first attempt at repair. The repair must be completed as soon as practicable, but no later than 30 calendar days after receipt of the replacement component, unless the repair requires a compressor station or well shutdown, the repair must be completed in accordance with the timeframe specified in paragraph (h)(3)(i) of this section. 	N/A

MS Oil Production General Permit NOI, Section OPGP-G, v. 2019.1

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5397a(h)(4) 40 CFR 60.5397a(i) 40 CFR 60.5420a(c)(15) 40 CFR 60.5420a(c)	VOC	 Each identified source of fugitive emissions must be resurveyed to complete repair according to the requirements in paragraphs (h)(4)(i) through (iv) of this section, to ensure that there are no fugitive emissions. Requirements that specify records to be kept and record retention time: Records for each monitoring survey shall be maintained as specified §60.5420a(c)(15). For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, maintain the records identified in paragraphs (c)(15)(i) through (ix) of this section, as applicable. Records must be maintained either onsite or at the nearest local field office for at least 5 years. 	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5397a(j) 40 CFR 60.5420a(b) 40 CFR 60.5420a(b)(11) 40 CFR 60.5410a	VOC	 Requirements that specify reports to be submitted: Annual reports shall be submitted for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station that include the information specified in §60.5420a(b)(7). Multiple collection of fugitive emissions components at a well site or at a compressor station may be included in a single annual report. Submit an annual report containing the information specified in §60.5420a(b)(1)(i)-(iv)&(b)(7)(i)-(iv), as applicable. The initial annual report is due no later than 90 days after the end of the initial compliance period as determined according to §60.5410a. Subsequent annual reports are due no later than the same date each year as the initial annual report. Submit reports to the EPA via CEDRI, except as outlined in this paragraph (b)(11). (CEDRI can be accessed through the EPA's CDX (https://cdx.epa.gov/).) The initial compliance period begins on August 2, 2016, or upon initial startup, whichever is later, and ends no later than 1 year after August 2, 2016. The initial compliance period may be less than one full year. 	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
16-07-FE Fugitive Emissions	Standards of Performance for Crude Oil and Natural Gas Facilities (40 CFR 60-Subpart OOOOa) 40 CFR 60.5410a(j) 40 CFR 60.5415a(h)	VOC	To achieve initial compliance with the fugitive emission standards for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, comply with paragraphs (j)(1) through (5) of this section. Demonstrate continuous compliance with the fugitive emission standards specified in §60.5397a(a)(1) according to paragraphs (h)(1) through (4) of this section.	

Emission Calculations

Emission calculations shown below are presented for informational purposes only as vapors from the gun barrel tank are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

1a-07-GBT-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Gun Barrel Tank-Common Vent (ABJ-1111)

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	15000		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	15000		
Average VOC Working Losses - L _W (lb/yr):	904,796.691		
Average VOC Standing Losses - L _S (lb/yr):	10,474.464		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.2643/8760	=	132.10
Max. Hourly Uncontrolled THC Losses (lb/hr)	= $(Ls + (Lw * QMax \div Qavg)) * 1.2643/8760$	=	132.10
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	578.61

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

JNCONTROLLED EMISSIONS SUMMARY:						
		CAL	CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Weight Percent Average Hourly (lb/hr) Maximum Hou (lb/hr)		Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	1.0418	1.3763	1.3763	6.0282		
Methane (excluded from VOC total)	7.1440	9.4374	9.4374	41.3357		
Ethane (excluded from VOC total)	12.7151	16.7970	16.7970	73.5711		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0091	0.0091	0.0398		
Propane	20.1603	26.6324	26.6324	116.6498		
Iso-Butane	6.7943	8.9755	8.9755	39.3126		
N-Butane	24.7308	32.6701	32.6701	143.0949		
Iso-Pentane	7.1127	9.3961	9.3961	41.1550		
N-Pentane	10.4422	13.7945	13.7945	60.4199		
Iso-Hexane	3.2510	4.2947	4.2947	18.8108		
N-Hexane (TAP)	2.2186	2.9308	2.9308	12.8368		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.1485	0.1961	0.1961	0.8590		
Cyclohexane	0.3771	0.4982	0.4982	2.1822		

Heptanes	2.5825	3.4115	3.4115	14.9425
Methylcyclohexane	0.2942	0.3887	0.3887	1.7025
Toluene (TAP)	0.2037	0.2691	0.2691	1.1788
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.8913	0.8913	3.9040
Ethylbenzene (TAP)	0.0122	0.0161	0.0161	0.0706
Xylenes (TAP)	0.0231	0.0305	0.0305	0.1335
Nonanes	0.0661	0.0873	0.0873	0.3826
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	3.45	3.45	15.12
	Total VOC Emissions	104.48	104.48	457.64
Total Nor	ı VOC & Non TAP-HC	26.23	26.23	114.91
Total F	Iydrocarbon Emissions	132.10	132.10	578.61

DATA:	
Emission Source:	Flash Gas from Oil
Flash Gas Specific Gravity:	1.5377
Average Oil Throughput: (BBLD)	15000
Maximum Oil Throughput: (BBLD)	15000
Basis of Emission Estimates:	Actual GOR & Actual Flare Gas Analysis
Flash Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 172-24090228-001A

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at this facility, refer to Southern Petroleum Laboratories Report No.: 23080183-007A in supporting documentation. The following table shows the actual field and laboratory conditions.

A DI Oil Creavity @ 60°E	Process (Gas/Oil Ratio	
API Oil Gravity @ 60°F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)
Actual Facility & Laboratory Conditions:			
20.72	38	86	
39.73	0	60	12.80
	12.80		

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Oil Rate * GOR	=	8000.00
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	939.84
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Oil Rate to Avg. Oil Rate	=	939.84
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	4116.50

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results and normalized to account for the removal of Nitrogen and the presence of H2S; refer to supporting documentation

NCONTROLLED EMISSIONS SUMMARY:					
		CAL	CALCULATED EMISSION RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	1.0418	9.7917	9.7917	42.8875	
Methane (excluded from VOC total)	7.1440	67.1419	67.1419	294.0808	
Ethane (excluded from VOC total)	12.7151	119.5022	119.5022	523.4183	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0646	0.0646	0.2831	
Propane	20.1603	189.4755	189.4755	829.9006	
Iso-Butane	6.7943	63.8559	63.8559	279.6880	
N-Butane	24.7308	232.4305	232.4305	1018.0430	
Iso-Pentane	7.1127	66.8485	66.8485	292.7958	
N-Pentane	10.4422	98.1406	98.1406	429.8550	
Iso-Hexane	3.2510	30.5546	30.5546	133.8287	
N-Hexane (TAP)	2.2186	20.8510	20.8510	91.3270	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.1485	1.3953	1.3953	6.1113	
Cyclohexane	0.3771	3.5445	3.5445	15.5249	
Heptanes	2.5825	24.2712	24.2712	106.3075	
Methylcyclohexane	0.2942	2.7654	2.7654	12.1126	
Toluene (TAP)	0.2037	1.9148	1.9148	8.3866	
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000	
Octanes	0.6747	6.3412	6.3412	27.7746	
Ethylbenzene (TAP)	0.0122	0.1146	0.1146	0.5022	
Xylenes (TAP)	0.0231	0.2169	0.2169	0.9500	
Nonanes	0.0661	0.6214	0.6214	2.7217	
Decanes Plus	0.0000	0.0000	0.0000	0.0000	
Total Weight Percent:	100.0000				
	Total TAP Emissions	24.56	24.56	107.56	
	Total VOC Emissions	743.34	743.34	3255.83	
Total Nor	VOC & Non TAP-HC	186.64	186.64	817.50	
	Total Emissions	939.84	939.84	4116.50	

DATA:

Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	5,475,000
Gross Blanket Gas Required (MSCF/Yr):	30,742
Gas from Process to Tank(s) (MSCF/Yr):	70,080
Calculated Volume Requirement (MSCF/Yr):	-39,338

*There are no emissions associated with supplied blanket gas as flash generated from this tank should be sufficient to maintain the gas blanket as demonstrated herein.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Oil Flash + Blanket Gas	=	3713.47
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5377		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	89.33		

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	3.67
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	89.33
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	16.08

EMISSION SUMMARY (based on the above referenced flare gas analysis):

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.038	0.931	0.168	
Methane (excluded from VOC total)	7.1440	0.262	6.382	1.149	
Ethane (excluded from VOC total)	12.7151	0.467	11.358	2.044	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.006	0.001	
Propane	20.1603	0.740	18.009	3.242	
Iso-Butane	6.7943	0.249	6.069	1.092	
N-Butane	24.7308	0.908	22.092	3.976	
Iso-Pentane	7.1127	0.261	6.354	1.144	
N-Pentane	10.4422	0.383	9.328	1.679	
Iso-Hexane	3.2510	0.119	2.904	0.523	
N-Hexane (TAP)	2.2186	0.081	1.982	0.357	
Methylcyclopentane	0.0000	0.000	0.000	0.000	
Benzene (TAP)	0.1485	0.005	0.133	0.024	
Cyclohexane	0.3771	0.014	0.337	0.061	
Heptanes	2.5825	0.095	2.307	0.415	
Methylcyclohexane	0.2942	0.011	0.263	0.047	

Toluene (TAP)	0.2037	0.007	0.182	0.033
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.6747	0.025	0.603	0.108
Ethylbenzene (TAP)	0.0122	0.000	0.011	0.002
Xylenes (TAP)	0.0231	0.001	0.021	0.004
Nonanes	0.0661	0.002	0.059	0.011
Decanes Plus	0.0000	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.10	2.33	0.42
Total VOC Emissions		2.90	70.65	12.72
Total Non VOC & Non TAP-HC		0.73	17.74	3.19
	Total Emissions	3.67	89.33	16.08

3-6

Emission Calculations

Emission calculations shown below are presented for informational purposes only as vapors from the wet oil tank are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

1b-07-OST-CV

EMISSION SOURCE DESCRIPTION:

1500 BBL Wet Oil Tank-Common Vent (ABJ-1118)

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	50		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	50		
Average VOC Working Losses - L _W (lb/yr):	2,997.505		
Average VOC Standing Losses - L _S (lb/yr):	3,200.559		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.2643/8760	=	0.89
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 1.2643/8760$	=	0.89
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	3.92

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

INCONTROLLED EMISSIONS SUMMARY:						
		CALCULATED EMISSION RATES				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	1.0418	0.0093	0.0093	0.0408		
Methane (excluded from VOC total)	7.1440	0.0639	0.0639	0.2799		
Ethane (excluded from VOC total)	12.7151	0.1137	0.1137	0.4982		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0001	0.0001	0.0003		
Propane	20.1603	0.1804	0.1804	0.7899		
Iso-Butane	6.7943	0.0608	0.0608	0.2662		
N-Butane	24.7308	0.2212	0.2212	0.9690		
Iso-Pentane	7.1127	0.0636	0.0636	0.2787		
N-Pentane	10.4422	0.0934	0.0934	0.4092		
Iso-Hexane	3.2510	0.0291	0.0291	0.1274		
N-Hexane (TAP)	2.2186	0.0198	0.0198	0.0869		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.1485	0.0013	0.0013	0.0058		
Cyclohexane	0.3771	0.0034	0.0034	0.0148		

		0.0001		
Heptanes	2.5825	0.0231	0.0231	0.1012
Methylcyclohexane	0.2942	0.0026	0.0026	0.0115
Toluene (TAP)	0.2037	0.0018	0.0018	0.0080
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.0060	0.0060	0.0264
Ethylbenzene (TAP)	0.0122	0.0001	0.0001	0.0005
Xylenes (TAP)	0.0231	0.0002	0.0002	0.0009
Nonanes	0.0661	0.0006	0.0006	0.0026
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.02	0.02	0.10
	0.71	0.71	3.10	
Total Non	0.18	0.18	0.78	
Total Hydrocarbon Emissions		0.89	0.89	3.92

DATA:	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	18,250
Gross Blanket Gas Required (MSCF/Yr):	102
Gas from Process to Tank(s) (MSCF/Yr):	8,595
Calculated Volume Requirement (MSCF/Yr):	-8,493

*There are no emissions associated with supplied blanket gas as flash generated from the gun barrel tank should be sufficient to maintain the gas blanket as demonstrated herein.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Blanket Gas	=	3.10
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5377		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	0.18		

Avg. Hourly Emissions (lb/hr)	=	Annual Total/8760 (hrs/yr)	=	0.01
Maximum Hourly Emissions (lb/hr)	=	Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	0.18
Maximum Annual Emissions (TPY)	=	Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.03

EMISSION SUMMARY (based on the above referenced flare gas analysis):

		CAL	CULATED EMISSI	ON RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000
Carbon Dioxide (excluded from VOC total)	1.0418	0.000	0.002	0.000
Methane (excluded from VOC total)	7.1440	0.000	0.013	0.002
Ethane (excluded from VOC total)	12.7151	0.001	0.023	0.004

Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.000	0.000
Propane	20.1603	0.001	0.036	0.007
Iso-Butane	6.7943	0.000	0.012	0.002
N-Butane	24.7308	0.002	0.045	0.008
Iso-Pentane	7.1127	0.000	0.013	0.002
N-Pentane	10.4422	0.001	0.019	0.003
Iso-Hexane	3.2510	0.000	0.006	0.001
N-Hexane (TAP)	2.2186	0.000	0.004	0.001
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.1485	0.000	0.000	0.000
Cyclohexane	0.3771	0.000	0.001	0.000
Heptanes	2.5825	0.000	0.005	0.001
Methylcyclohexane	0.2942	0.000	0.001	0.000
Toluene (TAP)	0.2037	0.000	0.000	0.000
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.6747	0.000	0.001	0.000
Ethylbenzene (TAP)	0.0122	0.000	0.000	0.000
Xylenes (TAP)	0.0231	0.000	0.000	0.000
Nonanes	0.0661	0.000	0.000	0.000
Decanes Plus	0.0000	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
Total TAP Emissions		0.00	0.00	0.00
	Total VOC Emissions		0.14	0.03
Total Nor	n VOC & Non TAP-HC	0.00	0.04	0.01
	Total Emissions	0.01	0.18	0.03

Emission calculations shown below are presented for informational purposes only as vapors from the dry oil tank are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

1c-07-OST-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Dry Oil Tank-Common Vent (ABJ-1119A)

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	5000		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	15000		
Average VOC Working Losses - L _W (lb/yr):	59,560.301		
Average VOC Standing Losses - L _S (lb/yr):	5,565.369		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.2643/8760	=	9.40
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 1.2643/8760$	=	26.59
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	41.17

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

NCONTROLLED EMISSIONS SUMMARY:					
		CAL	CALCULATED EMISSION RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.0979	0.2771	0.4289	
Methane (excluded from VOC total)	7.1440	0.6715	1.8998	2.9412	
Ethane (excluded from VOC total)	12.7151	1.1952	3.3813	5.2349	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0006	0.0018	0.0028	
Propane	20.1603	1.8950	5.3612	8.3002	
Iso-Butane	6.7943	0.6386	1.8068	2.7973	
N-Butane	24.7308	2.3246	6.5766	10.1818	
Iso-Pentane	7.1127	0.6686	1.8915	2.9284	
N-Pentane	10.4422	0.9815	2.7769	4.2991	
Iso-Hexane	3.2510	0.3056	0.8645	1.3385	
N-Hexane (TAP)	2.2186	0.2085	0.5900	0.9134	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.1485	0.0140	0.0395	0.0611	
Cyclohexane	0.3771	0.0354	0.1003	0.1553	

Heptanes	2.5825	0.2427	0.6867	1.0632
Methylcyclohexane	0.2942	0.0277	0.0782	0.1211
Toluene (TAP)	0.2037	0.0192	0.0542	0.0839
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.0634	0.1794	0.2778
Ethylbenzene (TAP)	0.0122	0.0011	0.0032	0.0050
Xylenes (TAP)	0.0231	0.0022	0.0061	0.0095
Nonanes	0.0661	0.0062	0.0176	0.0272
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.25	0.69	1.08
Total VOC Emissions		7.43	21.03	32.56
Total Non VOC & Non TAP-HC		1.87	5.28	8.18
Total F	Iydrocarbon Emissions	9.40	26.59	41.17

DATA:	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	1,825,000
Gross Blanket Gas Required (MSCF/Yr):	10,247
Gas from Process to Tank(s) (MSCF/Yr):	13,113
Calculated Volume Requirement (MSCF/Yr):	-2,865

*There are no emissions associated with supplied blanket gas as flash generated from the gun barrel tank should be sufficient to maintain the gas blanket as demonstrated herein.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Blanket Gas	=	32.56
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5377		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	2.22		

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.09		
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	2.22		
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.40		
EMISSION SUMMARY (based on the above referenced flare gas analysis):					

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.001	0.023	0.004	
Methane (excluded from VOC total)	7.1440	0.007	0.159	0.028	
Ethane (excluded from VOC total)	12.7151	0.012	0.282	0.051	

Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.000	0.000
Propane	20.1603	0.018	0.448	0.080
Iso-Butane	6.7943	0.006	0.151	0.027
N-Butane	24.7308	0.023	0.549	0.099
Iso-Pentane	7.1127	0.006	0.158	0.028
N-Pentane	10.4422	0.010	0.232	0.042
Iso-Hexane	3.2510	0.003	0.072	0.013
N-Hexane (TAP)	2.2186	0.002	0.049	0.009
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.1485	0.000	0.003	0.001
Cyclohexane	0.3771	0.000	0.008	0.002
Heptanes	2.5825	0.002	0.057	0.010
Methylcyclohexane	0.2942	0.000	0.007	0.001
Toluene (TAP)	0.2037	0.000	0.005	0.001
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.6747	0.001	0.015	0.003
Ethylbenzene (TAP)	0.0122	0.000	0.000	0.000
Xylenes (TAP)	0.0231	0.000	0.001	0.000
Nonanes	0.0661	0.000	0.001	0.000
Decanes Plus	0.0000	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
Total TAP Emissions		0.00	0.06	0.01
	Total VOC Emissions		1.76	0.32
Total Nor	Total Non VOC & Non TAP-HC		0.44	0.08
	Total Emissions	0.09	2.22	0.40

Emission calculations shown below are presented for informational purposes only as vapors from the dry oil tank are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

1d-07-OST-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Dry Oil Tank-Common Vent (ABJ-1119B)

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	5000		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	15000		
Average VOC Working Losses - L _W (lb/yr):	59,560.301		
Average VOC Standing Losses - L _S (lb/yr):	5,565.369		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.2643/8760	=	9.40
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 1.2643/8760$	=	26.59
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	41.17

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:					
		CAL	ON RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.0979	0.2771	0.4289	
Methane (excluded from VOC total)	7.1440	0.6715	1.8998	2.9412	
Ethane (excluded from VOC total)	12.7151	1.1952	3.3813	5.2349	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0006	0.0018	0.0028	
Propane	20.1603	1.8950	5.3612	8.3002	
Iso-Butane	6.7943	0.6386	1.8068	2.7973	
N-Butane	24.7308	2.3246	6.5766	10.1818	
Iso-Pentane	7.1127	0.6686	1.8915	2.9284	
N-Pentane	10.4422	0.9815	2.7769	4.2991	
Iso-Hexane	3.2510	0.3056	0.8645	1.3385	
N-Hexane (TAP)	2.2186	0.2085	0.5900	0.9134	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.1485	0.0140	0.0395	0.0611	
Cyclohexane	0.3771	0.0354	0.1003	0.1553	

Heptanes	2.5825	0.2427	0.6867	1.0632
Methylcyclohexane	0.2942	0.0277	0.0782	0.1211
Toluene (TAP)	0.2037	0.0192	0.0542	0.0839
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.0634	0.1794	0.2778
Ethylbenzene (TAP)	0.0122	0.0011	0.0032	0.0050
Xylenes (TAP)	0.0231	0.0022	0.0061	0.0095
Nonanes	0.0661	0.0062	0.0176	0.0272
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions		0.69	1.08
Total VOC Emissions		7.43	21.03	32.56
Total Non VOC & Non TAP-HC		1.87	5.28	8.18
Total H	Iydrocarbon Emissions	9.40	26.59	41.17

DATA:	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	1,825,000
Gross Blanket Gas Required (MSCF/Yr):	10,247
Gas from Process to Tank(s) (MSCF/Yr):	13,113
Calculated Volume Requirement (MSCF/Yr):	-2,865

*There are no emissions associated with supplied blanket gas as flash generated from the gun barrel tank should be sufficient to maintain the gas blanket as demonstrated herein.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Blanket Gas	=	32.56
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5377		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	2.22		

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.09
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	2.22
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.40

		CAL	CULATED EMISSI	ISSION RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.001	0.023	0.004	
Methane (excluded from VOC total)	7.1440	0.007	0.159	0.028	
Ethane (excluded from VOC total)	12.7151	0.012	0.282	0.051	

Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.000	0.000
Propane	20.1603	0.018	0.448	0.080
Iso-Butane	6.7943	0.006	0.151	0.027
N-Butane	24.7308	0.023	0.549	0.099
Iso-Pentane	7.1127	0.006	0.158	0.028
N-Pentane	10.4422	0.010	0.232	0.042
Iso-Hexane	3.2510	0.003	0.072	0.013
N-Hexane (TAP)	2.2186	0.002	0.049	0.009
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.1485	0.000	0.003	0.001
Cyclohexane	0.3771	0.000	0.008	0.002
Heptanes	2.5825	0.002	0.057	0.010
Methylcyclohexane	0.2942	0.000	0.007	0.001
Toluene (TAP)	0.2037	0.000	0.005	0.001
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.6747	0.001	0.015	0.003
Ethylbenzene (TAP)	0.0122	0.000	0.000	0.000
Xylenes (TAP)	0.0231	0.000	0.001	0.000
Nonanes	0.0661	0.000	0.001	0.000
Decanes Plus	0.0000	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.00	0.06	0.01
	Total VOC Emissions	0.07	1.76	0.32
Total Nor	n VOC & Non TAP-HC	0.02	0.44	0.08
	Total Emissions	0.09	2.22	0.40

Emission calculations shown below are presented for informational purposes only as vapors from the dry oil tank are routed to the control flare (EPN: 3-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

1e-12-OST-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Dry Oil Tank-Common Vent (ABJ-1119C)

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	5000		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	15000		
Average VOC Working Losses - L _W (lb/yr):	59,560.301		
Average VOC Standing Losses - L _S (lb/yr):	5,565.369		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.2643/8760	=	9.40
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 1.2643/8760$	=	26.59
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	41.17

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:					
		CAL	CALCULATED EMISSION RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	1.0418	0.0979	0.2771	0.4289	
Methane (excluded from VOC total)	7.1440	0.6715	1.8998	2.9412	
Ethane (excluded from VOC total)	12.7151	1.1952	3.3813	5.2349	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0006	0.0018	0.0028	
Propane	20.1603	1.8950	5.3612	8.3002	
Iso-Butane	6.7943	0.6386	1.8068	2.7973	
N-Butane	24.7308	2.3246	6.5766	10.1818	
Iso-Pentane	7.1127	0.6686	1.8915	2.9284	
N-Pentane	10.4422	0.9815	2.7769	4.2991	
Iso-Hexane	3.2510	0.3056	0.8645	1.3385	
N-Hexane (TAP)	2.2186	0.2085	0.5900	0.9134	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.1485	0.0140	0.0395	0.0611	
Cyclohexane	0.3771	0.0354	0.1003	0.1553	

Heptanes	2.5825	0.2427	0.6867	1.0632
Methylcyclohexane	0.2942	0.0277	0.0782	0.1211
Toluene (TAP)	0.2037	0.0192	0.0542	0.0839
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.0634	0.1794	0.2778
Ethylbenzene (TAP)	0.0122	0.0011	0.0032	0.0050
Xylenes (TAP)	0.0231	0.0022	0.0061	0.0095
Nonanes	0.0661	0.0062	0.0176	0.0272
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.25	0.69	1.08
	Total VOC Emissions	7.43	21.03	32.56
Total Nor	n VOC & Non TAP-HC	1.87	5.28	8.18
Total F	Iydrocarbon Emissions	9.40	26.59	41.17

DATA:	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	1,825,000
Gross Blanket Gas Required (MSCF/Yr):	10,247
Gas from Process to Tank(s) (MSCF/Yr):	13,113
Calculated Volume Requirement (MSCF/Yr):	-2,865

*There are no emissions associated with supplied blanket gas as flash generated from the gun barrel tank should be sufficient to maintain the gas blanket as demonstrated herein.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Blanket Gas	=	32.56
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5377		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	2.22		

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.09
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	2.22
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.40

		CALCULATED EMISSION RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000
Carbon Dioxide (excluded from VOC total)	1.0418	0.001	0.023	0.004
Methane (excluded from VOC total)	7.1440	0.007	0.159	0.028
Ethane (excluded from VOC total)	12.7151	0.012	0.282	0.051

Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.000	0.000
Propane	20.1603	0.018	0.448	0.080
Iso-Butane	6.7943	0.006	0.151	0.027
N-Butane	24.7308	0.023	0.549	0.099
Iso-Pentane	7.1127	0.006	0.158	0.028
N-Pentane	10.4422	0.010	0.232	0.042
Iso-Hexane	3.2510	0.003	0.072	0.013
N-Hexane (TAP)	2.2186	0.002	0.049	0.009
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.1485	0.000	0.003	0.001
Cyclohexane	0.3771	0.000	0.008	0.002
Heptanes	2.5825	0.002	0.057	0.010
Methylcyclohexane	0.2942	0.000	0.007	0.001
Toluene (TAP)	0.2037	0.000	0.005	0.001
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.6747	0.001	0.015	0.003
Ethylbenzene (TAP)	0.0122	0.000	0.000	0.000
Xylenes (TAP)	0.0231	0.000	0.001	0.000
Nonanes	0.0661	0.000	0.001	0.000
Decanes Plus	0.0000	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.00	0.06	0.01
	Total VOC Emissions	0.07	1.76	0.32
Total Nor	n VOC & Non TAP-HC	0.02	0.44	0.08
	Total Emissions	0.09	2.22	0.40

Emission calculations shown below are presented for informational purposes only as vapors from the water vortex flume are routed to the control flare (EPN: 4-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

2a-07-WVF-CV

EMISSION SOURCE DESCRIPTION:

Water Vortex Flume-Common Vent (ABM-1122)

DATA:			
Emission Source:	Crude Oil/Water Storage Vapors ('Working' & 'Standing')		
Average Daily Oil Throughput: (Annual Average; BBLD - Q _{avg})	50		
Maximum Daily Oil Throughput: (BBLD - Q _{max})	50		
Average Daily Water Throughput: (Annual Average; BBLD - Q _{avg})	50000		
Maximum Daily Water Throughput: (BBLD - Q _{max})	50000		
Average VOC Working Losses - L _W (lb/yr):	88,635.699		
Average VOC Standing Losses - L _S (lb/yr):	6.265		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 52.2569/8760	=	528.79
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 52.2569/8760$	=	528.79

SPECIATION FACTORS:

Annual Potential Uncontrolled THC Losses (TPY)

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24050260-002A in supporting documentation.

= Hourly * 8760/2000

UNCONTROLLED EMISSIONS SUMMARY:					
		CAL	ON RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	98.0481	518.4637	518.4637	2270.8711	
Methane (excluded from VOC total)	0.0270	0.1427	0.1427	0.6249	
Ethane (excluded from VOC total)	0.0044	0.0233	0.0233	0.1020	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0365	0.0365	0.1601	
Propane	0.0191	0.1008	0.1008	0.4414	
Iso-Butane	0.1468	0.7760	0.7760	3.3989	
N-Butane	0.1106	0.5851	0.5851	2.5627	
Iso-Pentane	0.1414	0.7479	0.7479	3.2759	
N-Pentane	0.1881	0.9948	0.9948	4.3573	
Iso-Hexane	0.2512	1.3281	1.3281	5.8173	
N-Hexane (TAP)	0.2070	1.0946	1.0946	4.7943	

=

2316.08

Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
5 5 1				
Benzene (TAP)	0.0747	0.3951	0.3951	1.7306
Cyclohexane	0.1077	0.5697	0.5697	2.4953
Heptanes	0.3226	1.7058	1.7058	7.4713
Methylcyclohexane	0.0990	0.5236	0.5236	2.2935
Toluene (TAP)	0.0324	0.1715	0.1715	0.7510
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.1327	0.7019	0.7019	3.0744
Ethylbenzene (TAP)	0.0010	0.0053	0.0053	0.0232
Xylenes (TAP)	0.0075	0.0398	0.0398	0.1742
Nonanes	0.0700	0.3700	0.3700	1.6207
Decanes Plus	0.0017	0.0089	0.0089	0.0389
Total Weight Percent:	100.0000			
	Total TAP Emissions	1.74	1.74	7.63
	Total VOC Emissions	10.12	10.12	44.32
Total Nor	ı VOC & Non TAP-HC	0.17	0.17	0.73
Total F	Iydrocarbon Emissions	528.79	528.79	2316.08

DATA:	
Emission Source:	Flash Gas from Oil
Flash Gas Specific Gravity:	1.5304
Average Oil Throughput: (BBLD)	50
Maximum Oil Throughput: (BBLD)	50
Basis of Emission Estimates:	Actual GOR & Actual Flare Gas Analysis
Flash Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 172-24050260-002A

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at this facility, refer to Southern Petroleum Laboratories Report No.: 23080183-007A in supporting documentation. The following table shows the actual field and laboratory conditions.

API Oil Gravity @ 60°F	Process	Gas/Oil Ratio	
API Oli Gravity @ 60 F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)
Actual Facility & Laboratory Conditions:			
39.73	50	86	
39.75	0	60	12.80
	·	GOR Estmiate:	12.80

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Oil Rate * GOR	=	26.67
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	3.12
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Oil Rate to Avg. Oil Rate	=	3.12
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	13.67

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results and normalized to account for the removal of Nitrogen and the presence of H2S; refer to supporting documentation

UNCONTROLLED EMISSIONS SUMMARY:				
		CAL	CULATED EMISSI	ON RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000
Carbon Dioxide (excluded from VOC total)	98.0481	3.0575	3.0575	13.3989
Methane (excluded from VOC total)	0.0270	0.0008	0.0008	0.0037
Ethane (excluded from VOC total)	0.0044	0.0001	0.0001	0.0006
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0002	0.0002	0.0009
Propane	0.0191	0.0006	0.0006	0.0026
Iso-Butane	0.1468	0.0046	0.0046	0.0201
N-Butane	0.1106	0.0035	0.0035	0.0151
Iso-Pentane	0.1414	0.0044	0.0044	0.0193
N-Pentane	0.1881	0.0059	0.0059	0.0257
Iso-Hexane	0.2512	0.0078	0.0078	0.0343
N-Hexane (TAP)	0.2070	0.0065	0.0065	0.0283
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.0747	0.0023	0.0023	0.0102
Cyclohexane	0.1077	0.0034	0.0034	0.0147
Heptanes	0.3226	0.0101	0.0101	0.0441
Methylcyclohexane	0.0990	0.0031	0.0031	0.0135
Toluene (TAP)	0.0324	0.0010	0.0010	0.0044
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.1327	0.0041	0.0041	0.0181
Ethylbenzene (TAP)	0.0010	0.0000	0.0000	0.0001
Xylenes (TAP)	0.0075	0.0002	0.0002	0.0010
Nonanes	0.0700	0.0022	0.0022	0.0096
Decanes Plus	0.0017	0.0001	0.0001	0.0002
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.01	0.01	0.05
	Total VOC Emissions	0.06	0.06	0.26
Total Nor	ı VOC & Non TAP-HC	0.00	0.00	0.00
	Total Emissions	3.12	3.12	13.67

DATA:

Emission Source:	Flash Gas from Brine Solution
Approx. Pressure Drop of Brine Solution: (psig)	50
Approx. Temperature of Brine Solution: (°F)	86
Flash Gas Specific Gravity:	1.5304
Avg. Water Throughput: (BBLD)	50000
Max. Water Throughput: (BBLD)	50000
Gas to Water Ratio: (SCF/BBL of Brine; GWR)	0.5
Basis of Emission Estimates:	API Documentation & Actual Flare Gas Analysis (Refer to supporting documentation)
Flash Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 172-24050260-002A

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Brine Rate * GWR	=	1041.67
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	121.79
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Water Rate to Avg. Water Rate	=	121.79
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	533.44

EMISSION ESTIMATES:

The magnitude of the solubility of natural gas in the interstitial water present in oil sands was studied by The American Petroleum Institute (API) and presented in a 1944 document entitled, "P-V-T and Solubility Relations". Results of these studies have been projected to provide estimates of gas volumes present in the brine solution handled at this site within the specific pressure and temperature ranges expected. The composition of this gas is based on the referenced analysis and normalized to account for the removal of Nitrogen and the presence of H2S.

EMISSIONS SUMMARY:						
		CALCULATED EMISSION RAT				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	98.0481	119.4174	119.4174	523.0279		
Methane (excluded from VOC total)	0.0270	0.0329	0.0329	0.1439		
Ethane (excluded from VOC total)	0.0044	0.0054	0.0054	0.0235		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0084	0.0084	0.0369		
Propane	0.0191	0.0232	0.0232	0.1017		
Iso-Butane	0.1468	0.1787	0.1787	0.7828		
N-Butane	0.1106	0.1348	0.1348	0.5902		
Iso-Pentane	0.1414	0.1723	0.1723	0.7545		
N-Pentane	0.1881	0.2291	0.2291	1.0036		
Iso-Hexane	0.2512	0.3059	0.3059	1.3398		
N-Hexane (TAP)	0.2070	0.2521	0.2521	1.1042		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.0747	0.0910	0.0910	0.3986		
Cyclohexane	0.1077	0.1312	0.1312	0.5747		
Heptanes	0.3226	0.3929	0.3929	1.7208		
Methylcyclohexane	0.0990	0.1206	0.1206	0.5282		
Toluene (TAP)	0.0324	0.0395	0.0395	0.1730		
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000		

Octanes	0.1327	0.1617	0.1617	0.7081
Ethylbenzene (TAP)	0.0010	0.0012	0.0012	0.0054
Xylenes (TAP)	0.0075	0.0092	0.0092	0.0401
Nonanes	0.0700	0.0852	0.0852	0.3733
Decanes Plus	0.0017	0.0020	0.0020	0.0090
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.40	0.40	1.76
Total VOC Emissions		2.33	2.33	10.21
Total Non VOC & Non TAP-HC		0.04	0.04	0.17
	Total Emissions	121.79	121.79	533.44

DATA:

Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	18,268,250
Gross Blanket Gas Required (MSCF/Yr):	N/A*

*There are no emissions associated with supplied blanket gas as the water vortex flume maintains a constant level.

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Oil Flash Gas + Brine Flash Gas + Blanket Gas	=	54.79
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	1.5304		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30		
Max. Minutes a Hatch is Opened in a Single Hour:	5		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	168.98		

Avg. Hourly Emissions (lb/hr)	=	Annual Total/8760 (hrs/yr)	=	6.95
Maximum Hourly Emissions (lb/hr)	=	Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	168.98
Maximum Annual Emissions (TPY)	=	Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	30.42

EMISSION SUMMARY (based on the above referenced flare gas analysis):

		CALCULATED EMISSION RAT				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000		
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000		
Carbon Dioxide (excluded from VOC total)	98.0481	6.810	165.682	29.823		
Methane (excluded from VOC total)	0.0270	0.002	0.046	0.008		
Ethane (excluded from VOC total)	0.0044	0.000	0.007	0.001		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.012	0.002		
Propane	0.0191	0.001	0.032	0.006		
Iso-Butane	0.1468	0.010	0.248	0.045		
N-Butane	0.1106	0.008	0.187	0.034		
Iso-Pentane	0.1414	0.010	0.239	0.043		
N-Pentane	0.1881	0.013	0.318	0.057		
Iso-Hexane	0.2512	0.017	0.424	0.076		

l otal Non	Total Non VOC & Non TAP-HC Total Emissions		0.05 168.98	0.01 30.42
	Total VOC Emissions		3.23	0.58
	Total TAP Emissions	0.02	0.56	0.10
Total Weight Percent:	100.0000			
Other NM/NE HC	0.0000	0.000	0.000	0.000
Decanes Plus	0.0017	0.000	0.003	0.001
Nonanes	0.0700	0.005	0.118	0.021
Xylenes (TAP)	0.0075	0.001	0.013	0.002
Ethylbenzene (TAP)	0.0010	0.000	0.002	0.000
Octanes	0.1327	0.009	0.224	0.040
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Toluene (TAP)	0.0324	0.002	0.055	0.010
Methylcyclohexane	0.0990	0.007	0.167	0.030
Heptanes	0.3226	0.022	0.545	0.098
Cyclohexane	0.1077	0.007	0.182	0.033
Benzene (TAP)	0.0747	0.005	0.126	0.023
Methylcyclopentane	0.0000	0.000	0.000	0.000
N-Hexane (TAP)	0.2070	0.014	0.350	0.063

Emission calculations shown below are presented for informational purposes only as vapors from the water vortex tank are routed to the control flare (EPN: 4-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

2b-07-WVT-CV

EMISSION SOURCE DESCRIPTION:

9700 BBL Water Vortex Tank-Common Vent (ABM-1120)

DATA:			
Emission Source:	Water Storage Vapors ('Working' & 'Standing')		
Average Daily Water Throughput: (Annual Average; BBLD - Q _{avg})	50000		
Maximum Daily Water Throughput: (BBLD - Q _{max})	50000		
Average VOC Working Losses - L _W (lb/yr):	16,304.054		
Average VOC Standing Losses - L _S (lb/yr):	717.295		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 52.2569/8760	=	101.54
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 52.2569/8760$	=	101.54
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	444.74

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24050260-002A in supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:					
		CAL	ON RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	98.0481	99.5573	99.5573	436.0608	
Methane (excluded from VOC total)	0.0270	0.0274	0.0274	0.1200	
Ethane (excluded from VOC total)	0.0044	0.0045	0.0045	0.0196	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0070	0.0070	0.0307	
Propane	0.0191	0.0194	0.0194	0.0848	
Iso-Butane	0.1468	0.1490	0.1490	0.6527	
N-Butane	0.1106	0.1124	0.1124	0.4921	
Iso-Pentane	0.1414	0.1436	0.1436	0.6290	
N-Pentane	0.1881	0.1910	0.1910	0.8367	
Iso-Hexane	0.2512	0.2550	0.2550	1.1171	
N-Hexane (TAP)	0.2070	0.2102	0.2102	0.9206	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.0747	0.0759	0.0759	0.3323	
Cyclohexane	0.1077	0.1094	0.1094	0.4792	

	Total TAP Emissions Total VOC Emissions		0.33	1.47 8.51
Total Weight Percent:	100.0000			
Decanes Plus	0.0017	0.0017	0.0017	0.0075
Nonanes	0.0700	0.0711	0.0711	0.3112
Xylenes (TAP)	0.0075	0.0076	0.0076	0.0335
Ethylbenzene (TAP)	0.0010	0.0010	0.0010	0.0045
Octanes	0.1327	0.1348	0.1348	0.5904
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0324	0.0329	0.0329	0.1442
Methylcyclohexane	0.0990	0.1005	0.1005	0.4404
Heptanes	0.3226	0.3275	0.3275	1.4347

DATA.	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	18,250,000
Gross Blanket Gas Required (MSCF/Yr):	N/A*

*There are no emissions associated with supplied blanket gas as the water vortex tank maintains a constant level.

Uncontrolled VOC Emission Total (TPY)	Sto	rage Vapors + Bl	anket Gas	=	8.51
DATA:					
Emission Source:	Losses When Openin	g Thief Hatche	?S		
Specific Gravity of Gas:	1.5304				
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30				
Max. Minutes a Hatch is Opened in a Single Hour:	5				
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	8.46				
Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (1	=	0.35		
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate	Hr Hatch is Open	=	8.46	
Maximum Annual Emissions (TPY)	= Max. Hourly THC R	=	1.52		
EMISSION SUMMARY (based on the above reference	ed flare gas analysis):				
		CAL	CULATED EMISSIO	ON RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TF	Y)
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	98.0481	0.340	8.295	1.493	
Methane (excluded from VOC total)	0.0270	0.000	0.002	0.000	
Ethane (excluded from VOC total)	0.0044	0.000	0.000	0.000	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.001	0.000	
Propane	0.0191	0.000	0.002	0.000	

Iso-Butane	0.1468	0.001	0.012	0.002
N-Butane	0.1106	0.000	0.009	0.002
Iso-Pentane	0.1414	0.000	0.012	0.002
N-Pentane	0.1881	0.001	0.016	0.003
Iso-Hexane	0.2512	0.001	0.021	0.004
N-Hexane (TAP)	0.2070	0.001	0.018	0.003
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.0747	0.000	0.006	0.001
Cyclohexane	0.1077	0.000	0.009	0.002
Heptanes	0.3226	0.001	0.027	0.005
Methylcyclohexane	0.0990	0.000	0.008	0.002
Toluene (TAP)	0.0324	0.000	0.003	0.000
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.1327	0.000	0.011	0.002
Ethylbenzene (TAP)	0.0010	0.000	0.000	0.000
Xylenes (TAP)	0.0075	0.000	0.001	0.000
Nonanes	0.0700	0.000	0.006	0.001
Decanes Plus	0.0017	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.00	0.03	0.01
	Total VOC Emissions	0.01	0.16	0.03
Total Nor	NOC & Non TAP-HC	0.00	0.00	0.00
	Total Emissions	0.35	8.46	1.52

Emission calculations shown below are presented for informational purposes only as vapors from the produced water tank are routed to the control flare (EPN: 4-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

2d-07-WST-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Produced Water Tank-Common Vent (1129A)

DATA:			
Emission Source:	Water Storage Vapors ('Working' & 'Standing')		
Average Daily Water Throughput: (Annual Average; BBLD - Q _{avg})	25000		
Maximum Daily Water Throughput: (BBLD - Q _{max})	50000		
Average VOC Working Losses - L _W (lb/yr):	8,181.3 77		
Average VOC Standing Losses - L _S (lb/yr):	398.002		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 52.2569/8760	=	51.18
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 52.2569/8760$	=	99.98
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	224.17

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24050260-002A in supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:					
		CAL	ON RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	98.0481	50.1805	98.0331	219.7905	
Methane (excluded from VOC total)	0.0270	0.0138	0.0270	0.0605	
Ethane (excluded from VOC total)	0.0044	0.0023	0.0044	0.0099	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0035	0.0069	0.0155	
Propane	0.0191	0.0098	0.0191	0.0427	
Iso-Butane	0.1468	0.0751	0.1467	0.3290	
N-Butane	0.1106	0.0566	0.1106	0.2480	
Iso-Pentane	0.1414	0.0724	0.1414	0.3171	
N-Pentane	0.1881	0.0963	0.1881	0.4217	
Iso-Hexane	0.2512	0.1285	0.2511	0.5630	
N-Hexane (TAP)	0.2070	0.1059	0.2070	0.4640	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.0747	0.0382	0.0747	0.1675	
Cyclohexane	0.1077	0.0551	0.1077	0.2415	

Heptanes	0.3226	0.1651	0.3225	0.7231
Methylcyclohexane	0.0990	0.0507	0.0990	0.2220
Toluene (TAP)	0.0324	0.0166	0.0324	0.0727
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.1327	0.0679	0.1327	0.2976
Ethylbenzene (TAP)	0.0010	0.0005	0.0010	0.0022
Xylenes (TAP)	0.0075	0.0039	0.0075	0.0169
Nonanes	0.0700	0.0358	0.0700	0.1569
Decanes Plus	0.0017	0.0009	0.0017	0.0038
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.17	0.33	0.74
	Total VOC Emissions	0.98	1.91	4.29
Total Nor	Total Non VOC & Non TAP-HC		0.03	0.07
Tatal F	Iydrocarbon Emissions	51.18	99.98	224.17

DATA.	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	9,125,000
Gross Blanket Gas Required (MSCF/Yr):	N/A*

*There are no emissions associated with supplied blanket gas as the produced water tank maintains a constant level.

Uncontrolled VOC Emission Total (TPY)	Sto	orage Vapors + Bl	anket Gas	=	4.29
DATA:					
Emission Source:	Losses When Openin	g Thief Hatche	25		
Specific Gravity of Gas:	1.5304				
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30				
Max. Minutes a Hatch is Opened in a Single Hour:	5				
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	8.33				
And Hereber Designing (II-A.)	- A	1			0.24
Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)			=	0.34
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open			=	8.33
Maximum Annual Emissions (TPY)	= Max. Hourly THC R	ate * Hours/Yr H	atch is Open	=	1.50
EMISSION SUMMARY (based on the above referen	ced flare gas analysis):				
		CAL	CULATED EMISSI	ON RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TF	Y)
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	98.0481	0.336	8.167	1.470	
Methane (excluded from VOC total)	0.0270	0.000	0.002	0.000	
Ethane (excluded from VOC total)	0.0044	0.000	0.000	0.000	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.001	0.000	
Propane	0.0191	0.000	0.002	0.000	

Iso-Butane	0.1468	0.001	0.012	0.002
N-Butane	0.1106	0.000	0.009	0.002
Iso-Pentane	0.1414	0.000	0.012	0.002
N-Pentane	0.1881	0.001	0.016	0.003
Iso-Hexane	0.2512	0.001	0.021	0.004
N-Hexane (TAP)	0.2070	0.001	0.017	0.003
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.0747	0.000	0.006	0.001
Cyclohexane	0.1077	0.000	0.009	0.002
Heptanes	0.3226	0.001	0.027	0.005
Methylcyclohexane	0.0990	0.000	0.008	0.001
Toluene (TAP)	0.0324	0.000	0.003	0.000
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.1327	0.000	0.011	0.002
Ethylbenzene (TAP)	0.0010	0.000	0.000	0.000
Xylenes (TAP)	0.0075	0.000	0.001	0.000
Nonanes	0.0700	0.000	0.006	0.001
Decanes Plus	0.0017	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.00	0.03	0.00
	Total VOC Emissions	0.01	0.16	0.03
Total Nor	ı VOC & Non TAP-HC	0.00	0.00	0.00
	Total Emissions	0.34	8.33	1.50

Emission calculations shown below are presented for informational purposes only as vapors from the produced water tank are routed to the control flare (EPN: 4-07-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER:

2e-07-WST-CV

EMISSION SOURCE DESCRIPTION:

5000 BBL Produced Water Tank-Common Vent (1129B)

DATA:			
Emission Source:	Water Storage Vapors ('Working' & 'Standing')		
Average Daily Water Throughput: (Annual Average; BBLD - Q _{avg})	25000		
Maximum Daily Water Throughput: (BBLD - Q _{max})	50000		
Average VOC Working Losses - L _W (lb/yr):	8,181.3 77		
Average VOC Standing Losses - L _S (lb/yr):	398.002		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 52.2569/8760	=	51.18
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (Ls + (Lw * QMax \div Qavg)) * 52.2569/8760$	=	99.98
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	224.17

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24050260-002A in supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:						
		CAL	CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	98.0481	50.1805	98.0331	219.7905		
Methane (excluded from VOC total)	0.0270	0.0138	0.0270	0.0605		
Ethane (excluded from VOC total)	0.0044	0.0023	0.0044	0.0099		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0035	0.0069	0.0155		
Propane	0.0191	0.0098	0.0191	0.0427		
Iso-Butane	0.1468	0.0751	0.1467	0.3290		
N-Butane	0.1106	0.0566	0.1106	0.2480		
Iso-Pentane	0.1414	0.0724	0.1414	0.3171		
N-Pentane	0.1881	0.0963	0.1881	0.4217		
Iso-Hexane	0.2512	0.1285	0.2511	0.5630		
N-Hexane (TAP)	0.2070	0.1059	0.2070	0.4640		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.0747	0.0382	0.0747	0.1675		
Cyclohexane	0.1077	0.0551	0.1077	0.2415		

Heptanes	0.3226	0.1651	0.3225	0.7231
Methylcyclohexane	0.0990	0.0507	0.0990	0.2220
Toluene (TAP)	0.0324	0.0166	0.0324	0.0727
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.1327	0.0679	0.1327	0.2976
Ethylbenzene (TAP)	0.0010	0.0005	0.0010	0.0022
Xylenes (TAP)	0.0075	0.0039	0.0075	0.0169
Nonanes	0.0700	0.0358	0.0700	0.1569
Decanes Plus	0.0017	0.0009	0.0017	0.0038
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.17	0.33	0.74
	Total VOC Emissions	0.98	1.91	4.29
Total Nor	Total Non VOC & Non TAP-HC		0.03	0.07
Tatal F	Iydrocarbon Emissions	51.18	99.98	224.17

DATA.	
Emission Source:	Blanket Gas
Average Annual Tank Throughput (BBLs/Yr):	9,125,000
Gross Blanket Gas Required (MSCF/Yr):	N/A*

*There are no emissions associated with supplied blanket gas as the produced water tank maintains a constant level.

Uncontrolled VOC Emission Total (TPY)	Sto	orage Vapors + Bl	anket Gas	=	4.29
DATA:					
Emission Source:	Losses When Openin	g Thief Hatche	S		
Specific Gravity of Gas:	1.5304				
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	30				
Max. Minutes a Hatch is Opened in a Single Hour:	5				
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	8.33				
Ave Henry Emissions (lb/hr)	- Annual Tata1/8760 (hua/am)			0.34
Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)			=	
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open			=	8.33
Maximum Annual Emissions (TPY)	= Max. Hourly THC R	ate * Hours/Yr H	atch is Open	=	1.50
EMISSION SUMMARY (based on the above reference	ed flare gas analysis):				
		CAL	CULATED EMISSI	ON RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TI	YY)
Water Vapor (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Nitrogen (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	98.0481	0.336	8.167	1.470	
Methane (excluded from VOC total)	0.0270	0.000	0.002	0.000	
Ethane (excluded from VOC total)	0.0044	0.000	0.000	0.000	
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.000	0.001	0.000	
Propane	0.0191	0.000	0.002	0.000	

Iso-Butane	0.1468	0.001	0.012	0.002
N-Butane	0.1106	0.000	0.009	0.002
Iso-Pentane	0.1414	0.000	0.012	0.002
N-Pentane	0.1881	0.001	0.016	0.003
Iso-Hexane	0.2512	0.001	0.021	0.004
N-Hexane (TAP)	0.2070	0.001	0.017	0.003
Methylcyclopentane	0.0000	0.000	0.000	0.000
Benzene (TAP)	0.0747	0.000	0.006	0.001
Cyclohexane	0.1077	0.000	0.009	0.002
Heptanes	0.3226	0.001	0.027	0.005
Methylcyclohexane	0.0990	0.000	0.008	0.001
Toluene (TAP)	0.0324	0.000	0.003	0.000
2,2,4-Trimethylpentane (TAP)	0.0000	0.000	0.000	0.000
Octanes	0.1327	0.000	0.011	0.002
Ethylbenzene (TAP)	0.0010	0.000	0.000	0.000
Xylenes (TAP)	0.0075	0.000	0.001	0.000
Nonanes	0.0700	0.000	0.006	0.001
Decanes Plus	0.0017	0.000	0.000	0.000
Other NM/NE HC	0.0000	0.000	0.000	0.000
Total Weight Percent:	100.0000			
	0.00	0.03	0.00	
	Total VOC Emissions			
Total Nor	VOC & Non TAP-HC	0.00	0.00	0.00
	Total Emissions	0.34	8.33	1.50

POINT SOURCE I.D. NUMBER:

EMISSION SOURCE DESCRIPTION:

DATA:

Emission Source:

Atmospheric Gas Streams: Gas Stream #1a: Gas Heat of Combustion (BTU/Ft³-actual flare gas analysis): Gas Stream #1b: Gas Heat of Combustion (BTU/Ft³-actual flare gas analysis): Combustion Efficiency:

Car Sturrer #1. Oll Tarels Truck Landing Verson

3-07-F

Control Flare (ZZZ-180)

Unburned Hydrocarbons and Products of Combustion

Oil Tank Truck Loading Vapors 2510 Oil Storage Tank Vapors 2510 98% for all other HC

Gas Stream #1a - Oil Tank		~ *	N. 26 12 11	and and antipod b	alaruu			
Gas volume estimates are suppo		inpu		L'ana are outtinea d	elow:			
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific Gravity of Gas			
718.51	8690.00	98		2510	1	5377		
		CALCULA	TIONS					
	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)		
Gas Combusted (annual hourly average)	=	718.51	x	0.98	x	8,690		
(annual nourly average)	=	6,118,975 scf/yr =			704.14 SCF/hr			
H C	=	gas rate (scf/yr)	x	gas heat of combustion (BTU/scf)				
Heat Content (annual hourly average)	=	6,118,975	x	2510				
(annual nourly average)	=			1.7533 MMBTU/Hr				
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)		
Emissions (lbs/hr)	=	1.5377	x	0.0764	x	718.51		
(lDS/hr)	=	84.41	lbs/hr					
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)		
Emissions (TPY)	=	1.5377	x	0.0000382	x	6,243,852		
(11 1)	=	366.76	TPY					

SPECIATION FACTORS:

Speciation of the flash gas mixture is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

EMISSIONS SUMMARY:

		C	CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	1.0418	0.8724	0.8794	3.8211		
Methane (excluded from VOC total)	7.1440	0.1196	0.1206	0.5240		
Ethane (excluded from VOC total)	12.7151	0.2129	0.2147	0.9327		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0069	0.0001	0.0001	0.0005		
Propane	20.1603	0.3376	0.3404	1.4788		
Iso-Butane	6.7943	0.1138	0.1147	0.4984		
N-Butane	24.7308	0.4142	0.4175	1.8141		
Iso-Pentane	7.1127	0.1191	0.1201	0.5217		
N-Pentane	10.4422	0.1749	0.1763	0.7660		
Iso-Hexanes	3.2510	0.0544	0.0549	0.2385		
N-Hexane (TAP)	2.2186	0.0372	0.0375	0.1627		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.1485	0.0025	0.0025	0.0109		
Cyclohexane	0.3771	0.0063	0.0064	0.0277		
Heptanes	2.5825	0.0432	0.0436	0.1894		
Methylcyclohexane	0.2942	0.0049	0.0050	0.0216		
Toluene (TAP)	0.2037	0.0034	0.0034	0.0149		
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000		
Octanes	0.6747	0.0113	0.0114	0.0495		
Ethylbenzene (TAP)	0.0122	0.0002	0.0002	0.0009		
Xylenes (TAP)	0.0231	0.0004	0.0004	0.0017		
Nonanes	0.0661	0.0011	0.0011	0.0048		
Decanes Plus	0.0000	0.0000	0.0000	0.0000		
Other NM/NE HC	0.0000	0.0000	0.0000	0.0000		
TOTAL WEIGHT PERCENT:	100.0000					
TOTAL TAP I	EMISSIONS	0.04	0.04	0.19		
TOTAL VOC I	EMISSIONS	1.32	1.34	5.80		
TOTAL Non-VOC & N	on-TAP HC:	0.33	0.34	1.46		
TOTAL	EMISSIONS	2.53	2.55	11.08		

Gas volume estimates are suppo	rted by the cald	culations associate	ed with EP	Ns: 1a-07	-GBT-CV	through 1e-12-0	ST-CV and a	re outlined below:	
	-		INPU			0			
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficient	Gas Hea		Heat of Combustion (BTU/FT ³)		Specific Gravity of Gas		
9,372.06	8760	98			2510		1.:	1.5377	
		CA	ALCULA	TIONS					
	=	gas rate (scj	f/hr)	x	effic	iency	x	usage (hrs/yr)	
Gas Combusted (annual hourly average)	=	9,372.00	5	x	0.	98	x	8,760	
(unnuur nourry uverage)	=	80),457,261	scf/yr		=	9,184.62	SCF/hr	
	=	gas rate (sc	f/yr)	x		gas heat of	combustion	(BTU/scf)	
Heat Content (annual hourly average)	=	80,457,20	61	x			2510		
(unnuul nourly uverage)	=						23.0534	MMBTU/Hr	
Uncontrolled Max. Hourly Emissions	=	gas specific g	gravity	x		y of air SCF)	x	Maximum Gas Rate (SCF/Hr)	
	=	1.5377		x	0.0	0764	x	9,372.06	
(lbs/hr)	=		1,101.03	lbs/hr					
Uncontrolled Annual =		gas specific g	gravity	x		y of air /SCF)	x	Total Gas Rate (SCF/Yr)	
Emissions (TPY)	=	1.5377		x	0.00	00382	x	82,099,246	
(11 1)	=		4,822.52	ТРҮ					
PECIATION FACTORS: peciation of the flash gas mix emoval of Nitrogen and the pre CMISSIONS SUMMARY:	ture is based o				uted to th	e control flare d	and normalized	ed to account for t	
					С	ALCULATED	EMISSION	RATES	
POLLUTANT:		Weight Percent	t A	verage ly (lb/hr)	Maximum Hourly (lb/hr		nnual (TPY)		
Nitrogen (exclude	d from VOC to	otal)	0.0000	0	.0000	0.0000		0.0000	
Carbon Dioxide (excl	uded from VO	C total)	1.0418	0	.8724	0.8794		3.8211	
Methane (exclude			7.1440	0	.1196	0.1206		0.5240	
Ethane (excluded	from VOC tot	al)	12.7151	0	.2129	0.2147		0.9327	
Hydrogen Sulfide (TAP: excluded from VOC total)		0.0069	0	0.0001 0.0001		0.0005			

Hydrogen Sulfide (TAP; excluded from VOC total)	0.0069	0.0001	0.0001	0.0005
Propane	20.1603	0.3376	0.3404	1.4788
Iso-Butane	6.7943	0.1138	0.1147	0.4984
N-Butane	24.7308	0.4142	0.4175	1.8141
Iso-Pentane	7.1127	0.1191	0.1201	0.5217
N-Pentane	10.4422	0.1749	0.1763	0.7660
Iso-Hexanes	3.2510	0.0544	0.0549	0.2385
N-Hexane (TAP)	2.2186	0.0372	0.0375	0.1627
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.1485	0.0025	0.0025	0.0109
Cyclohexane	0.3771	0.0063	0.0064	0.0277

Heptanes	2.5825	0.0432	0.0436	0.1894
Methylcyclohexane	0.2942	0.0049	0.0050	0.0216
Toluene (TAP)	0.2037	0.0034	0.0034	0.0149
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.0113	0.0114	0.0495
Ethylbenzene (TAP)	0.0122	0.0002	0.0002	0.0009
Xylenes (TAP)	0.0231	0.0004	0.0004	0.0017
Nonanes	0.0661	0.0011	0.0011	0.0048
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Other NM/NE HC	0.0000	0.0000	0.0000	0.0000
TOTAL WEIGHT PERCENT:	100.0000			
TOTAL TAP	TOTAL TAP EMISSIONS:			0.19
TOTAL VOC	1.32	1.34	5.80	
TOTAL Non-VOC & N	0.33	0.34	1.46	
TOTAL	2.53	2.55	11.08	

Total of Average Hourly VOC emissions estimated for this source:2.64 Lbs/HrTotal of Maximum Hourly VOC emissions estimated for this source:2.68 Lbs/HrTotal of Maximum Annual VOC emissions estimated for this source:11.60 TPYCALCULATIONS - Selected Combustion Products

Summary of all routine streams combusted by this flare:

Gas Stream	Annual Operating Hours	Average Flowrate (SCF/Hr)	Maximum Flowrate (SCF/Hr)	Average Heat Rate (MMBTU/Hr)	Maximum Heat Rate (MMBTU/Hr)
1a. Oil Tank Truck Loading Vapors	8690	712.77	718.51	1.7533	1.7674
1b. Oil Storage Tank Vapors	8760	9372.06	9372.06	23.0534	23.0534
	Totals:	10,084.83	10,090.57	24.81	24.82

Emission factor for soot is from AP-42 "Compilation of Air Pollution Emission Factors" for an industrial burn flare stack (refer to supporting documentation for copies).

 SO_2 emissions based on the composite H_2S composition of the flare gas streams assuming stoichiometric combustion.

POLLUTANT:	Emission	CALCULATED EMISSION RATES			
	Factor	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Soot (expressed as PM ₁₀)	0.000011	0.11	0.11	0.49	
Soot (expressed as PM _{2.5})	0.000011	0.11	0.11	0.49	
SO ₂	N/A	0.01	0.01	0.09	

	Emission	C	ALCULATED E	MISSION RATES
POLLUTANT:	Fastar	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen Oxides	0.1380	3.42	3.43	15.00
СО	0.2755	6.84	6.84	29.94

Emission factors for nitrogen oxide and carbon monoxide are from a 1983 CMA document entitled "A Report on a Flare Efficiency Study", for a non-assisted industrial burn flares. (refer to supporting documentation for copies).

4-07-F

POINT SOURCE I.D. NUMBER:

EMISSION SOURCE DESCRIPTION:

Atmospheric Control Flare (ZZZ-181)

DATA:	
Emission Source:	Unburned Hydrocarbons and Products of Combustion
Atmospheric Gas Streams:	
Gas Stream #1:	Water Storage Tank Vapors
Gas Heat of Combustion (BTU/Ft ³ -actual flare gas analysis):	47
Assist Gas Feed:	Yes
Gas Heat of Combustion (BTU/Ft ³ -propane):	2516
Combustion Efficiency:	98% for all other HC

Gas Stream #1 - Water Sto Gas volume estimates are suppo			$N_{\alpha}, 2_{\alpha}, 07$	WEV CV through	2. 07 WST CV and	and outlined below
<i>Sas volume estimales are supp</i> o	ried by the cat	INP		WFV-CV inrough 2	2e-07-WSI-CV and	are outlined below.
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific G	Gravity of Gas
7,334.80	8760	98		47	1.	5304
		CALCUL	ATIONS			
	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)
Gas Combusted (annual hourly average)	=	7,334.80	x	0.98	x	8,760
(unnuul nourly uverage)	=	62,967,791	scf/yr	=	7,188.10	SCF/hr
H G	=	gas rate (scf/yr)	x	gas he	eat of combustion	e (BTU/scf)
Heat Content (annual hourly average)	=	62,967,791	x		47	
(annual nourly average)	=				0.3378	MMBTU/Hr
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)
Emissions	=	1.5304	x	0.0764	x	7,334.80
(lbs/hr)	=	857.60	lbs/hr			
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	X	Total Gas Rate (SCF/Yr)
Emissions (TPY)	=	1.5304	x	0.0000382	x	64,252,848
(11 1)	=	3,756.30	TPY			

SPECIATION FACTORS:

Speciation of the flash gas mixture is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24050260-002A in supporting documentation.

SIONS SUMMARY:			CALCULATED EM	IISSION RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000
Carbon Dioxide (excluded from VOC total)	98.0481	840.8639	840.8639	3682.9839
Methane (excluded from VOC total)	0.0270	0.0046	0.0046	0.0203
Ethane (excluded from VOC total)	0.0044	0.0008	0.0008	0.0033
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0069	0.0012	0.0012	0.0052
Propane	0.0191	0.0033	0.0033	0.0143
Iso-Butane	0.1468	0.0252	0.0252	0.1102
N-Butane	0.1106	0.0190	0.0190	0.0831
Iso-Pentane	0.1414	0.0243	0.0243	0.1063
N-Pentane	0.1881	0.0323	0.0323	0.1413
Iso-Hexanes	0.2512	0.0431	0.0431	0.1887
N-Hexane (TAP)	0.2070	0.0355	0.0355	0.1555
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.0747	0.0128	0.0128	0.0561
Cyclohexane	0.1077	0.0185	0.0185	0.0809
Heptanes	0.3226	0.0553	0.0553	0.2423
Methylcyclohexane	0.0990	0.0170	0.0170	0.0744
Toluene (TAP)	0.0324	0.0056	0.0056	0.0244
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.1327	0.0228	0.0228	0.0997
Ethylbenzene (TAP)	0.0010	0.0002	0.0002	0.0008
Xylenes (TAP)	0.0075	0.0013	0.0013	0.0057
Nonanes	0.0700	0.0120	0.0120	0.0526
Decanes Plus	0.0017	0.0003	0.0003	0.0013
Other NM/NE HC	0.0000	0.0000	0.0000	0.0000
TOTAL WEIGHT PERCENT:	100.0000			
TOTAL TAP E	MISSIONS:	0.06	0.06	0.25
TOTAL VOC E	MISSIONS:	0.33	0.33	1.44
TOTAL Non-VOC & No	on-TAP HC:	0.01	0.01	0.02
TOTAL E	MISSIONS:	841.20	841.20	3684.45

Assist Gas (maximum gas i		u on conservati	INPU	<i>,</i>					
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficienc	ry (%)	Gas Heat (B2	of Com TU/FT ³		S	Specific Gravity of Gas	
490.00	8760	98		2516			1.52		
		C	ALCULA	TIONS					
	=	gas rate (scf	7hr)	x	effic	iency	3	r	usage (hrs/yr)
Gas Combusted (annual hourly average)	=	490.00		x	0.	98	5	r	8,760
(uninual nourly average)	=	4,	206,552	scf/yr	= 480.20 SCF/hr			SCF/hr	
Heat Content	=	gas rate (scj	%yr)	x		gas he	eat of co	mbustion	(BTU/scf)
(annual hourly average)	=	4,206,552	2	x				2516	
(4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	=							1.2082	MMBTU/Hr
Uncontrolled Max. Hourly	sions		ravity	x		y of air SCF)	ς	r	Maximum Gas Rate (SCF/Hr)
Emissions (lbs/hr)	=	1.5200		x	0.0	0764	3	r	490.00
(105/11/)	=		56.90 lbs/hr						
Uncontrolled Annual	=	gas specific g	ravity	x		y of air /SCF)	ç	r	Total Gas Rate (SCF/Yr)
Emissions (TPY)	=	1.5200		x	0.00	00382	j	r	4,292,400
$(1\Gamma 1)$	=		249.23	TPY					
SPECIATION FACTORS: Speciation of the assist gas is based of the assist gas based of the a		e.			(CALCULA	ATED EN	MISSION	RATES
POLLU	JTANT:		Weight Percent		rage (lb/hr)	Maxin Hourly (А	nnual (TPY)
Pro	pane		100.000	1.1	381	1.138	31		4.9847
r.	FOTAL WEIG	GHT PERCENT:	100.000						
		TOTAL TAP E	MISSION	S: 0.	00	0.00)		0.00
		TOTAL VOC E	MISSION	S: 1.	14	1.14	1		4.98
	TOTAL Non-VOC & Non-TAP HC: 0.00 0.00)		0.00	
		TOTAL E	MISSION	S: 1.	14	1.14	1		4.98
Total of Average Hourly V	OC emission	s estimated for 1	this sourc	e:				1	1.47 Lbs/Hr
Total of Maximum Hourly	VOC emissio	ons estimated fo	r this sou	rce:				1	1.47 Lbs/Hr
Total of Maximum Annual	VOC emission	ons estimated fo	r this sou	rce:				(5.42 TPY

Assist Gas (maximum gas flowrate based on conservative estimate):

	CALCULATIONS - Selected Combustion Products								
Summary of all routine stre	Summary of all routine streams combusted by this flare:								
Gas StreamAnnual Operating HoursAverage Flowrate (SCF/Hr)Maximum Flowrate (SCF/Hr)Average Heat Rate (SCF/Hr)Maximum He Rate (MMBTU/Hr)									
1. Water Storage Tank Vapors	8760	7334.80	7334.80	0.3378	0.3378				
Assist Gas Feed	8760	490.00	490.00	1.2082	1.2082				
	Totals:	7,824.80	7,824.80	1.55	1.55				

Emission factor for soot is from AP-42 "Compilation of Air Pollution Emission Factors" for an industrial burn flare stack (refer to supporting documentation for copies).

 SO_2 emissions based on the composite H_2S composition of the flare gas streams assuming stoichiometric combustion.

	Emission	0	CMISSION RATES	
POLLUTANT:	Factor	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Soot (expressed as PM ₁₀)	0.000011	0.09	0.09	0.38
Soot (expressed as PM _{2.5})	0.000011	0.09	0.09	0.38
SO ₂	N/A	0.11	0.11	0.49

Emission factors for nitrogen oxide and carbon monoxide are from a 1983 CMA document entitled "A Report on a Flare Efficiency Study", for a non-assisted industrial burn flares. (refer to supporting documentation for copies).

	Emission	C	CALCULATED B	EMISSION RATES
POLLUTANT:	Factor (lb/10 ⁶ BTU)	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen Oxides	0.0641	0.10	0.10	0.44
СО	0.5496	0.85	0.85	3.73

POINT SOURCE I.D. NUMBER:

5-07-SBP

EMISSION SOURCE DESCRIPTION:

Sand Blowdown Pit (ZZZ-130)

DATA:	
Emission Source:	Flash Gas from Brine Solution*
Approx. Pressure Drop of Brine Solution: (psig)	400
Approx. Temperature of Brine Solution: (°F)	72
Flash Gas Specific Gravity:	0.6131
Avg. Water Throughput: (BBL/Hr)	50
Max. Water Throughput: (BBL/Hr)	50
Blowdown Hours per Year:	730
Gas to Water Ratio: (SCF/BBL of Brine; GWR)	4.0
Basis of Emission Estimates:	API Documentation & Actual Inlet Gas Analysis (Refer to supporting documentation)
Flash Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 172-23080183-004A
*Associated with vessel blowdowns.	

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Brine Rate * GWR	=	200.00
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	9.37
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Water Rate to Avg. Water Rate	=	9.37
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * Blowdown Hours/2000	=	3.42

EMISSION ESTIMATES:

The magnitude of the solubility of natural gas in the interstitial water present in oil sands was studied by The American Petroleum Institute (API) and presented in a 1944 document entitled, "P-V-T and Solubility Relations". Results of these studies have been projected to provide estimates of gas volumes present in the brine solution handled at this site within the specific pressure and temperature ranges expected. The composition of this gas is based on the referenced analysis and normalized to account for the presence of H_2S .

SIONS SUMMARY:		CAL	CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.7206	0.0675	0.0675	0.0246		
Carbon Dioxide (excluded from VOC total)	8.4215	0.7889	0.7889	0.2880		
Methane (excluded from VOC total)	85.0332	7.9661	7.9661	2.9082		
Ethane (excluded from VOC total)	0.8973	0.0841	0.0841	0.0307		
Hydrogen Sulfide (excluded from VOC total)	0.0173	0.0016	0.0016	0.0006		
Propane	1.1157	0.1045	0.1045	0.0382		
Iso-Butane	0.3664	0.0343	0.0343	0.0125		
N-Butane	0.9225	0.0864	0.0864	0.0315		
Iso-Pentane	0.5157	0.0483	0.0483	0.0176		
N-Pentane	0.4382	0.0411	0.0411	0.0150		
Iso-Hexane	0.3373	0.0316	0.0316	0.0115		
N-Hexane (TAP)	0.1880	0.0176	0.0176	0.0064		

Uncontrolled VOC Emission Total (TPY)		Brine Flash C	Jas	= 0.
	Total Emissions	9.37	9.37	3.42
Total Non	8.05	8.05	2.94	
	Total VOC Emissions			0.17
	Total TAP Emissions	0.03	0.03	0.01
Total Weight Percent:	100.0000			
Decanes Plus	0.0752	0.0070	0.0070	0.0026
Nonanes	0.1219	0.0114	0.0114	0.0042
Xylenes (TAP)	0.0185	0.0017	0.0017	0.0006
Ethylbenzene (TAP)	0.0024	0.0002	0.0002	0.0001
Octanes	0.1696	0.0159	0.0159	0.0058
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0181	0.0017	0.0017	0.0006
Methylcyclohexane	0.1336	0.0125	0.0125	0.0046
Heptanes	0.3426	0.0321	0.0321	0.0117
Cyclohexane	0.1051	0.0098	0.0098	0.0036
Benzene (TAP)	0.0391	0.0037	0.0037	0.0013
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000

POINT SOURCE I.D. NUMBERS:

16-07-FE

EMISSION SOURCE DESCRIPTION:

Fugitive Emissions

DATA: Fugitive from Light Liquid & Gas-Service **Emission Source: Components Basis of Emission Estimates:** U.S. EPA

EMISSION CALCULATIONS:

					Calcu	ulated T	THC Emissions			
	Count	Count - by Service		THC Emission Factors ^(c) Hourly		urly	An	nual		
	Count	Dy Se	rvice	(kg/hr/source)		(kg/hr/source) Emissions		Emi	ssions	
					·	(lb/	/hr)	(T	PY)	
	Lt. Liquid	Gas	Total	Lt. Liquid Service	Gas Service	LL	Gas	LL	Gas	
Connectors	78	1,527	1605	2.1E-04	2.0E-04	0.036	0.673	0.16	2.95	
Flanges	92	0	92	1.1E-04	3.9E-04	0.022	0.000	0.10	0.00	
Open Ends	0	47	47	1.4E-03	2.0E-03	0.000	0.207	0.00	0.91	
Pumps ^(a)	9		9	1.3E-02	2.4E-03	0.258	N/A	1.13	N/A	
Valves	48	563	611	2.5E-03	4.5E-03	0.265	5.585	1.16	24.46	
"Others" ^(b)	0	32	32	7.5E-03	8.8E-03	0.000	0.621	0.00	2.72	
TOTALS:	227	2,169	2,396			0.58	7.09	2.54	31.04	

(a) Process Pumps Only

(b) "Others" equipment derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents

(c) Refer to EPA Publication No. 453/R-95-017, "Protocol for Equipment Leak Emission Estimates", copy included in supporting documentation

LIGHT LIQUID-SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in light liquid service was taken from EPA Publication No.: 453/R-95-017; "Protocol for Equipment Leak Emission Estimates" and normalized to account for the presence of H_2S .

EMISSIONS SUMMARY

EMISSIONS SUMMARI.						
		Calculated Emission Rate				
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annual (TPY)			
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0136	0.0001	0.0003			
NMEHC (expressed as VOC)	29.1960	0.1696	0.7429			
Benzene (TAP)	0.0270	0.0002	0.0007			
Ethylbenzene (TAP)	0.0170	0.0001	0.0004			

Toluene (TAP)	0.0750	0.0004	0.0019
Xylenes (m,p,o) (TAP)	0.0360	0.0002	0.0009
	TOTAL TAP EMISSIONS:	0.00	0.00
	TOTAL VOC EMISSIONS:	0.17	0.74

GAS SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in gas service is based on an actual inlet gas analysis and normalized to account for the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-23080183-004A in supporting documentation.

		Calculated I	Emission Rate	
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annua (TPY)	
Nitrogen (excluded from VOC total)	0.7206	0.0511	0.2237	
Carbon Dioxide (excluded from VOC total)	8.4215	0.5968	2.6140	
Methane (excluded from VOC total)	85.0332	6.0261	26.3944	
Ethane (excluded from VOC total)	0.8973	0.0636	0.2785	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0173	0.0012	0.0054	
Propane	1.1157	0.0791	0.3463	
Iso-Butane	0.3664	0.0260	0.1137	
N-Butane	0.9225	0.0654	0.2863	
Iso-Pentane	0.5157	0.0365	0.1601	
N-Pentane	0.4382	0.0311	0.1360	
Iso-Hexanes	0.3373	0.0239	0.1047	
N-Hexane (TAP)	0.1880	0.0133	0.0584	
Methylcyclopentane	0.0000	0.0000	0.0000	
Benzene (TAP)	0.0391	0.0028	0.0121	
Cyclohexane	0.1051	0.0074	0.0326	
Heptanes	0.3426	0.0243	0.1064	
Methylcyclohexane	0.1336	0.0095	0.0415	
Toluene (TAP)	0.0181	0.0013	0.0056	
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	
Octanes	0.1696	0.0120	0.0526	
Ethylbenzene (TAP)	0.0024	0.0002	0.0007	
Xylenes (TAP)	0.0185	0.0013	0.0057	
Nonanes	0.1219	0.0086	0.0378	
Decanes Plus	0.0752	0.0053	0.0233	
TOTAL WEIGHT PERCENT:	100.0000			
	TOTAL TAP EMISSIONS:	0.02	0.09	
	TOTAL VOC EMISSIONS:	0.35	1.52	
ТО	TAL Non-VOC & Non-TAP HC:	6.09	26.67	
	TOTAL Emissions:	7.09	31.04	

POINT SOURCE I.D. NUMBER:	17-07-CB		
EMISSION SOURCE DESCRIPTION:	Compressor Blowdowns		
DATA:			
Emission Source:	Compressor Blowdowns		
Gas Specific Gravity:	0.6131		
Maximum Volume per Blowdown Rate (SCF): (conservative estimate provided by operator)	45841		
Maximum Number of Blowdowns per Year:	60		
Basis of Emission Estimates:	Conservative Estimate Provided By Operator & Actual A (Refer to supporting documentation)	Inlet Gas	Analysis
Well Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 172-2308	80183-004	IA
Total Blowdown Gas Volume (SCF/Yr)	= Volume per Event * Number of Events	=	2750460.00
Avg. Hourly Uncontrolled Total Emissions (lb/hr)	= Gas Gravity * Density of Air * Volume per Blowdown	=	2147.23
Max. Hourly Uncontrolled Total Emissions (lb/hr)	= Gas Gravity * Density of Air * Volume per Blowdown	=	2147.23
Annual Potential Uncontrolled Total Emissions (TPY)	= Hourly * Number of Events per Year/2000	=	64.42

SPECIATION FACTORS:

Speciation of the compressor blowdowns is based on the referenced analysis and normalized to account for the presence of H2S.

EMISSIONS SUMMARY:

		CAL	SSION RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	0.7206	15.4732	15.4732	0.4642
Carbon Dioxide (excluded from VOC total)	8.4215	180.8290	180.8290	5.4249
Methane (excluded from VOC total)	85.0332	1825.8588	1825.8588	54.7757
Ethane (excluded from VOC total)	0.8973	19.2672	19.2672	0.5780
Hydrogen Sulfide (excluded from VOC total)	0.0173	0.3704	0.3704	0.0111
Propane	1.1157	23.9576	23.9576	0.7187
Iso-Butane	0.3664	7.8681	7.8681	0.2360
N-Butane	0.9225	19.8072	19.8072	0.5942
Iso-Pentane	0.5157	11.0739	11.0739	0.3322
N-Pentane	0.4382	9.4098	9.4098	0.2823
Iso-Hexane	0.3373	7.2430	7.2430	0.2173
N-Hexane (TAP)	0.1880	4.0378	4.0378	0.1211
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.0391	0.8395	0.8395	0.0252
Cyclohexane	0.1051	2.2562	2.2562	0.0677
Heptanes	0.3426	7.3571	7.3571	0.2207
Methylcyclohexane	0.1336	2.8694	2.8694	0.0861
Toluene (TAP)	0.0181	0.3894	0.3894	0.0117

Uncontrolled VOC Emission Total (TPY)	Com	pressor Blowdo	wns	=	3.16
	Total Emissions	2147.23	2147.23	64.42	
Total No.	on VOC & Non TAP-HC	1845.13	1845.13	55.35	
	Total VOC Emissions	105.43	105.43	3.16	
	Total TAP Emissions	6.09	6.09	0.18	
Total Weight Percent:	100.0000				
Decanes Plus	0.0752	1.6151	1.6151	0.0485	
Nonanes	0.1219	2.6175	2.6175	0.0785	
Xylenes (TAP)	0.0185	0.3974	0.3974	0.0119	
Ethylbenzene (TAP)	0.0024	0.0513	0.0513	0.0015	
Octanes	0.1696	3.6417	3.6417	0.1093	
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000	

POINT SOURCE I.D. NUMBER:	19-13-CST		
EMISSION SOURCE DESCRIPTION:	10-Chemical Storage Tanks (≤13,000 Gallons)		
DATA:			
Emission Source:	"Working" & "Standing" Losses		
Maximum Annual Throughput: (Gallons/Yr/Tank)	13,000		
Average VOC Working Losses - L _W (lb/yr):	678.087		
Average VOC Standing Losses - L _S (lb/yr):	14,101.230		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) / 8760	=	1.69
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	7.39

For purposes of permitting and/or providing conservative emission estimates, emissions were calculated using N-Hexane as the stored material for this tank. A throughput of approximately 130,000 gallons/yr was used in the emissions model in an effort to demonstrate a conservative potential emissions estimate.

POINT SOURCE I.D. NUMBER:	20-13-CST		
EMISSION SOURCE DESCRIPTION:	50-Chemical Storage Tanks (≤1,000 Gallons)		
DATA:			
Emission Source:	"Working" & "Standing" Losses		
Maximum Annual Throughput: (Gallons/Yr/Tank)	2,000		
Average VOC Working Losses - L _W (lb/yr):	247.677		
Average VOC Standing Losses - L _S (lb/yr):	7,136.200		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) / 8760	=	0.84
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	3.69

For purposes of permitting and/or providing conservative emission estimates, emissions were calculated using N-Hexane as the stored material for this tank. A throughput of approximately 100,000 gallons/yr was used in the emissions model in an effort to demonstrate a conservative potential emissions estimate.

Emission calculations shown below are presented for informational purposes only as vapors associated with oil tank truck loading are routed to the control flare (EPN: 3-07-F) for combustion.

POINT SOURCE I.D. NUMBER:

26-12-LL

EMISSION SOURCE DESCRIPTION:

Loading Losses-Oil Transfer to Tank Truck

DATA:			
Emission Source:	Vapors from Oil Truck Loading		
Maximum Annual Loading Volume-Barrels (Q):	5,475,000		
Average Oil Temperature - °F:	80		
Average Oil Temperature - °R (T):	540		
API Oil Gravity@ 100 °F (APIG):	43.0		
Vapor Molecular Weight - lb/lb/mole (M):	50		
Saturation Factor (S):	0.6		
Reid Vapor Pressure = -1.699 + (0.179 x APIG): (from Eq. 3-5 of API Pub. No.: 4683)	6.00		
True Vapor Pressure (P): (from Fig. 7.1-13b of AP-42)	5.33		
Loading Rate-Barrels/Hr (R): (conservative estimate)	630		
Basis of Loading Loss Estimates:	AP-42; June 2008 edition; refer to supporting documents of the support of the sup	nente	ation
Annual Uncontrolled Total Emissions (TPY)	= 12.46 * S * P * M/T*Q*42/2000/1000 gallons loaded	=	421.82
Hourly Uncontrolled Total Emissions (lb/hr)	= 12.46 * S * P * M/T*R*42/1000 gallons loaded	=	97.08
Max. Hourly Uncontrolled Total Emissions (lb/hr)	= 12.46 * S * P * M/T*R*42/1000 gallons loaded	=	97.08

SPECIATION FACTORS:

The composition of this gas is based on an actual analysis of the vapors routed to the control flare and normalized to account for the removal of Nitrogen and the presence of H2S; refer to Southern Petroleum Laboratories Report No.: 172-24090228-001A in supporting documentation.

EMISSIONS SUMMARY:						
		CALCULATED EMISSION RATE				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Carbon Dioxide (excluded from VOC total)	1.0418	1.0114	1.0114	4.3947		
Methane (excluded from VOC total)	7.1440	6.9354	6.9354	30.1346		
Ethane (excluded from VOC total)	12.7151	12.3438	12.3438	53.6350		
Hydrogen Sulfide (excluded from VOC total)	0.0069	0.0067	0.0067	0.0290		
Propane	20.1603	19.5717	19.5717	85.0404		
Iso-Butane	6.7943	6.5959	6.5959	28.6598		
N-Butane	24.7308	24.0087	24.0087	104.3194		

		CALCULA	TED EMISSION	RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Iso-Pentane	7.1127	6.9050	6.9050	30.0029
N-Pentane	10.4422	10.1373	10.1373	44.0475
Iso-Hexane	3.2510	3.1561	3.1561	13.7135
N-Hexane (TAP)	2.2186	2.1538	2.1538	9.3583
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.1485	0.1441	0.1441	0.6262
Cyclohexane	0.3771	0.3661	0.3661	1.5908
Heptanes	2.5825	2.5071	2.5071	10.8934
Methylcyclohexane	0.2942	0.2857	0.2857	1.2412
Toluene (TAP)	0.2037	0.1978	0.1978	0.8594
2,2,4-Trimethylpentane (TAP)	0.0000	0.0000	0.0000	0.0000
Octanes	0.6747	0.6550	0.6550	2.8461
Ethylbenzene (TAP)	0.0122	0.0118	0.0118	0.0515
Xylenes (TAP)	0.0231	0.0224	0.0224	0.0974
Nonanes	0.0661	0.0642	0.0642	0.2789
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent	100.0000			
	Total TAP Emissions	2.54	2.54	11.02
	Total VOC Emissions	76.78	76.78	333.63
Total Nor	VOC & Non TAP-HC	19.28	19.28	83.77
	Total Emissions	97.08	97.08	421.82

Calculated Max. Gas Flowrate (SCFH) = **718.51**

about:blank

This is not an official certificate of good standing.

Name History		
Name		Name Type
DENBURY ONSHORE, LLC		Legal
Business Information		
Business Type:	Limited Liability Company	
Business ID:	743899	
Status:	Good Standing	
Effective Date:	12/31/2003	
State of Incorporation:	DE	
Principal Office Address:	5851 Legacy Circle, Suite 1200 Plano, TX 75024	
Registered Agent		
Name		
CORPORATION SERVICE COMPAN 109 Executive Drive, Suite 3 Madison, MS 39110	NΥ	
Officers & Directors		
Name	Title	
Alan Rhoades 5320 LEGACY DRIVE PLANO, TX 75024	Organizer	
KATHLEEN D ASH 5851 LEGACY CIRCLE, SUITE 1200 PLANO, TX 75024	Manager	
KATHLEEN A BRACCI 5851 LEGACY CIRCLE, SUITE 1200 PLANO, TX 75024	Manager	
ROBERT D TRACY 5851 LEGACY CIRCLE, SUITE 1200 PLANO, TX 75024	Manager	

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	1a-07-GBT-CV
Tank Description	5000 BBL Gun Barrel Tank (ABJ-1111)
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	crude oil
RVP*	6.00
API gravity*	39.7
°F basis for gv*	60.0
bubble point psia	
API gravity at 60F	39.7
API gravity at 100F	43.0

Working Loss Product Factor (K $_P$)	
working loss turnover factor K $_N$	

0.75

Tank Orientation	Vertical	Tank Shell Color/Shade	Aluminum - Diffuse
Tank Diameter (D ft)	38.70	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	24.00	Tank Roof Color/Shade	Aluminum - Diffuse
Roof Height (H _R ft)	1.21	Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	23.00	Roof Type	vertical tank with cone roof
Avg Liquid Height (H _L ft)	11.50	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	5,475,000.00
actual tank pressure (P ₁ psig)	0.0	Annual Turnovers, N	1136.10
Shell Paint Solar Absorptance (S _A)	0.64	Annual Hours	8,760
Roof Paint Solar Absorptance (R _A)	0.64	tank max liquid volume (V _{LX} ft^3)	27,054.51
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H _{vo} ft)	12.903
roof outage (H _{RO} ft)	0.4031	vapor space volume (V $_{v}$ ft 3)	15,177.73

Antoine constants (log ₁₀, mmHg, °C) A B

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	А	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000		0.000	0.000			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature $(T_{AX}\ ^{\circ}F)$	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T_{AN} °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T_{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T_B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T $_{ m V}$ °F)	51.58	56.46	65.44	75.37	84.65	91.59	93.75	92.71	85.72	73.28	60.79	52.48	73.65
daily ambient temperature range ($\Delta T_A \ ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range ($\Delta T_V ^\circ R$)	23.67	28.35	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.39	27.48	23.52	33.06
daily average liquid surface temperature (T_{LA} °F)	49.92	54.25	62.54	71.63	80.55	87.29	89.56	88.78	82.37	70.60	58.83	50.94	70.60
daily maximum liquid surface temperature (T $_{LX}$ °F)	55.83	61.34	70.80	81.18	90.31	97.23	99.19	98.16	91.09	78.70	65.70	56.82	78.86
daily minimum liquid surface temperature (T_{LN} °F)	44.00	47.16	54.27	62.07	70.79	77.34	79.94	79.40	73.66	62.51	51.96	45.06	62.34
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	3.045	3.312	3.875	4.576	5.360	6.019	6.255	6.172	5.532	4.493	3.614	3.106	4.492
vapor pressure at daily max liq surface temp T_{LX} (P _{vx} psia)	3.414	3.789	4.509	5.419	6.334	7.105	7.336	7.214	6.418	5.190	4.108	3.479	5.204
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	2.708	2.884	3.313	3.841	4.508	5.067	5.303	5.253	4.746	3.872	3.168	2.766	3.860
daily vapor pressure range (ΔP_V)	0.7061	0.9047	1.1959	1.5787	1.8260	2.0379	2.0326	1.9604	1.6714	1.3174	0.9400	0.7128	1.3443
vapor space expansion factor (K_E)	0.1079	0.1358	0.1755	0.2305	0.2712	0.3120	0.3155	0.3028	0.2500	0.1922	0.1391	0.1084	0.1962
vapor molecular weight (M _v lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	2,610,510	2,357,880	2,610,510	2,526,300	2,610,510	2,526,300	2,610,510	2,610,510	2,526,300	2,610,510	2,526,300	2,610,510	30,736,650
monthly turnovers (N/month) with avg = total annual	96.49	87.15	96.49	93.38	96.49	93.38	96.49	96.49	93.38	96.49	93.38	96.49	1,136.10
vented vapor saturation factor (K_s)	0.3245	0.3063	0.2740	0.2421	0.2143	0.1955	0.1895	0.1915	0.2091	0.2455	0.2881	0.3201	0.2456
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0277	0.0299	0.0344	0.0399	0.0459	0.0509	0.0527	0.0521	0.0473	0.0393	0.0324	0.0283	0.0392
standing storage losses (L _s lb/month & avg is lb/yr)	628.93	612.09	779.22	874.18	1039.96	1115.86	1193.60	1180.11	1036.71	890.29	709.68	640.45	10701.06
working losses (L _w lb/month & avg is lb/yr)	54327.47	52872.66	67309.83	75512.85	89832.72	96388.94	103104.80	101939.24	89552.27	76903.91	61302.82	55322.98	924370.49
total losses (L _T lb/month & avg is lb/yr)	54956.40	53484.75	68089.05	76387.03	90872.68	97504.79	104298.40	103119.35	90588.98	77794.19	62012.50	55963.43	935071.55
max hourly Q in bbl/hour	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	3508.75	
max hourly working loss at P_{VX} & Q/hr & $K_{N}{=}1$ (L_W lb/hr)	73.021	78.680	90.470	104.879	120.743	133.874	138.582	137.015	124.378	103.365	85.143	74.359	
breathing/standing loss (L _s lb/hr)	0.845	0.911	1.047	1.407	1.687	1.962	1.991	1.910	1.562	1.197	0.986	0.861	
max hourly total loss (L _T lb/hr)	73.866	79.590	91.518	106.285	122.430	135.835	140.573	138.925	125.940	104.562	86.128	75.220	

$L_{\rm S} \, {\rm sum} \, {\rm months} \, \, L_{\rm W} \, {\rm sum} \, {\rm months}$ L_T sum months 924370.49

935071.55

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions

10701.06

ns	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	1.196	1.991	10,474.464	
	Working Loss L _w	103.287	138.582	904.796.691	max hourly total loss may not add up to $L_s + L_w$ as their max values may be different months
ĺ	Total Loss L _T	104.483	140.573	915,271.155	

Certificate of Analysis

Number: 172-24090228-001A

Kevin Hendricks Denbury 202 S 4th Street West Baker, MT 59313

Sample ID:WO# 211778968Station Name: MS Tinsley EOR FacilitySample Point: Flare Inlet Gas - ZZZ - 108PO/Ref. No:4300204782Method:GPA 2286Instrument:172_GC Micro A,Analyzed:09/27/2024 09:46:15

Report Date:09/30/2024Sampled By:Tim KeeneSample Of:GasSpotSample Date:09/14/202408:00Sample Conditions: 71 °FReceived Date:09/24/2024Login Date:09/24/2024

Analytical Data

951 19.4733 993 5.7531 923 0.8390 164 10.2397 219 16.2354 342 5.4717 014 19.9164 745 5.7281 305 8.4094 48 2.6181	3.6716 4.0894 1.2420 4.3552 1.1705 1.7033 0.5028	GPM TOTAL C2+	17.706
3230.839016410.239721916.23543425.471711419.91647455.72813058.40941482.6181	4.0894 1.2420 4.3552 1.1705 1.7033		
16410.239721916.23545425.471701419.91647455.72815058.40941482.6181	4.0894 1.2420 4.3552 1.1705 1.7033		
21916.23545425.471701419.91647455.72815058.40941482.6181	4.0894 1.2420 4.3552 1.1705 1.7033		
6425.471701419.91647455.72816058.40941482.6181	1.2420 4.3552 1.1705 1.7033		
01419.91647455.72816058.40941482.6181	4.3552 1.1705 1.7033		
7455.72815058.40941482.6181	1.1705 1.7033		
6058.4094482.6181	1.7033		
48 2.6181			
	0 5000		
4 7007	0.5026		
1.7867	0.3437		
612 0.1196	0.0173		
0.3037	0.0495		
299 2.0797	0.3861		
0.2370	0.0391		
0.1641	0.0240		
0.5434	0.0982		
0.0098	0.0014		
0.0186	0.0027		
66 0.0532	0.0094		
000 100.0000	17.7062		
	Total		
	299 2.0797 965 0.2370 712 0.1641 902 0.5434 937 0.0098 970 0.0186 166 0.0532	299 2.0797 0.3861 965 0.2370 0.0391 712 0.1641 0.0240 902 0.5434 0.0982 937 0.0098 0.0014 970 0.0186 0.0027 166 0.0532 0.0094 900 100.0000 17.7062	299 2.0797 0.3861 965 0.2370 0.0391 712 0.1641 0.0240 902 0.5434 0.0982 937 0.0098 0.0014 970 0.0186 0.0027 166 0.0532 0.0094 990 100.0000 17.7062

ona

Data reviewed by: Lalena Showalter, Laboratory Technician

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated. The test results apply to the sample as received.

Normalized Component Calculation

Flare Gas Analysis (EPN: 3-07-F); Southern Petroleum Laboratories Report No.: 172-24090228-001A

		Normalized		Fuel	Normalized	Component	Partial Heating
COMPONENT	mole %	mole %	COMPONENT MW	Weight	WT %	BTU/scf	Values
Water	0.0000	0.0000	18	0.00	0.0000	0	0
Nitrogen	27.7951	0.0000	28.0134	0.00	0.0000	0	0
Carbon Dioxide	0.7623	1.0557	44.01	0.46	1.0418	0	0
Methane	14.3393	19.8574	16.043	3.19	7.1440	1010	201
Ethane	13.6164	18.8563	30.07	5.67	12.7151	1770	334
Hydrogen Sulfide	0.0000	0.0090	34.08	0.00	0.0069	637	0
Propane	14.7219	20.3872	44.097	8.99	20.1603	2516	513
I-Butane	3.7642	5.2128	58.123	3.03	6.7943	3252	170
N-Butane	13.7014	18.9740	58.123	11.03	24.7308	3262	619
I-Pentane	3.1745	4.3961	72.15	3.17	7.1127	4001	176
N-Pentane	4.6605	6.4540	72.15	4.66	10.4422	4009	259
Other/Iso Hexanes	1.2148	1.6823	86.177	1.45	3.2510	4750	80
N-Hexane	0.8290	1.1480	86.177	0.99	2.2186	4756	55
Methylcyclopentane	0.0000	0.0000	84.1608	0.00	0.0000	4501	0
Benzene	0.0612	0.0848	78.114	0.07	0.1485	3742	3
Cyclohexane	0.1443	0.1998	84.1608	0.17	0.3771	4482	9
Heptane	0.8299	1.1493	100.204	1.15	2.5825	5503	63
Methylcyclohexane	0.0965	0.1336	98.188	0.13	0.2942	5216	7
Toluene	0.0712	0.0986	92.141	0.09	0.2037	4475	4
Iso-Octane/224-Trimethylpentane	0.0000	0.0000	114.231	0.00	0.0000	6232	0
Octanes	0.1902	0.2634	114.231	0.30	0.6747	6249	16
Ethylbenzene	0.0037	0.0051	106.167	0.01	0.0122	5222	0
Xylenes	0.0070	0.0097	106.167	0.01	0.0231	5209	1
Nonanes	0.0166	0.0230	128.258	0.03	0.0661	6997	2
Decanes Plus	0.0000	0.0000	142.285	0.00	0.0000	7743	0
TOTALS	100.0000	100.0000	MW=	44.59	100.0000	btu/scf =	2510.49852

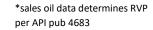
 sg
 1.5377

 VOC wt%
 79.0922

 Toxic wt%
 2.6060

SPL, Inc. 3111 1st Ave W Williston, ND 58801 701-368-7183

Flash Liberation of Hydrocarbon Liquid Study


Client: Facility: Equipment: Unique Number: Date Sampled: State: County:	Denbury MS Tinsley EOR Facility Not Indicated Not Indicated 08/08/23 MS Not Indicated	Sample Lab ID: Facility Well: Sample Source: Analyst: Date Analyzed: Site Notes:	23080183-007A Not Indicated eater Dump LP Separator 2104 JMC 08/18/23							
I	Flash Liberation of Hydrocarbon Liquid Conditions									
Separator Hydrocarbon L Stock Tank	iquid	Pressure (psig) 38.0 0.0	Temperature (°F) 86.0 60.0							
	Base	Conditions								
Base Conditions, Pressur	e	Condition 15.025	Units/Description psi							
	Flash Liberation of Hy	drocarbon Liqui	d Results							
Gas Oil Ratio Gas Oil Ratio Gas Specific Gravity Separator Volume Factor	-	Result 12.80 1.536 1.568 1.016	Units/Description SCF flashed vapor/bbl stock tank oil Ib flashed vapor/bbl stock tank oil Air = 1.000 Separator Volume/Stock tank Volume							
	Stock Tank Fluid Properties									
Shrinkage Recovery Fact Oil API Gravity at 60 °F Oil API Gravity, observed Specific Gravity at 60 °F Reid Vapor Pressure, psi	or	Result 0.9839 39.73 39.73 0.8264 2.74	Units/Description Fraction of first stage separator liquid at 59.97°F ASTM D7777, Measured Absolute Pressure at 100°F by D5191							
	Cylinder P	ressure Check								
Sample Conditions Test Sample	-	Pressure (psi) 38.0 29.0	Temperature (°F) 86.0 73.9							
	Quality Co	ntrol Summary								
Duplicate Results Gas Oil Ratio (% difference Separator Volume Factor Shrinkage Recovery Factor Cylinder Type Cylinder Size (cc) Cylinder Number	(% difference) or (% difference)	0.7 0.1 0.1 Piston 500 1992	Acceptable Range <5% <5% <5%							
Sample Collection Rate (r	n∟/min)	42	<50 mL/min							

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	1b-07-OST-CV
Tank Description	1500 BBL Wet Oil Tank (ABJ-1118)
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	crude oil
RVP*	6.00
API gravity*	39.7
°F basis for gv*	60.0
bubble point psia	
API gravity at 60F	39.7
API gravity at 100F	43.0

Working Loss Product Factor (K $_P$)	0.75
working loss turnover factor K $_{\rm N}$	1.000

Aluminum - Diffuse	Tank Shell Color/Shade	Vertical	Tank Orientation
average	Tank Shell Paint Condition	21.50	Tank Diameter (D ft)
Aluminum - Diffuse	Tank Roof Color/Shade	24.00	Vertical Height/Horizontal Length (H _s ft)
average	Tank Roof Paint Condition	0.67	Roof Height (H _R ft)
vertical tank with cone roof	Roof Type	23.00	Max Liquid Height (H $_{LX}$ ft)
no insulation	Tank Insulation	11.50	Avg Liquid Height (H _L ft)
no	Tank Underground?		Breather Vent Pressure Setting (P _{BP} psig)
18,250.00	Annual Throughput (Q bbl/year)		Breather Vent Vacuum Setting (P _{BV} psig)
12.27	Annual Turnovers, N	0.0	actual tank pressure (P ₁ psig)
8,760	Annual Hours	0.64	Shell Paint Solar Absorptance (S $_A$)
8,350.16	tank max liquid volume (V_{LX} ft ³)	0.64	Roof Paint Solar Absorptance (R $_A$)
12.724	vapor space outage (H _{vo} ft)	0.00	breather vent pressure range (ΔP_B psi)
4,619.44	vapor space volume (V $_{v}$ ft 3)	0.2240	roof outage (H _{RO} ft)

Antoine constants (log $_{10}$, mmHg, °C)

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	A	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000	•	0.000	0.000	•	•	*

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T _{AN} °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T _{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T _B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T _v °F)	51.11	55.84	64.63	74.31	83.50	90.38	92.57	91.60	84.78	72.53	60.24	52.04	72.79
daily ambient temperature range ($\Delta T_A ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range ($\Delta T_V ^{\circ} R$)	24.09	28.39	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.39	27.91	24.07	33.06
daily average liquid surface temperature (T _{LA} °F)	49.68	53.94	62.13	71.10	79.97	86.68	88.97	88.22	81.90	70.23	58.55	50.72	70.17
daily maximum liquid surface temperature (T _{LX} °F)	55.70	61.04	70.39	80.66	89.73	96.63	98.60	97.61	90.62	78.32	65.53	56.74	78.43
daily minimum liquid surface temperature (T _{LN} °F)	43.66	46.84	53.86	61.54	70.21	76.74	79.35	78.84	73.18	62.13	51.58	44.70	61.91
vapor pressure at daily avg liq surface temp T _{LA} (P _{VA} psia)	3.031	3.292	3.845	4.533	5.306	5.957	6.193	6.115	5.487	4.462	3.595	3.093	4.458
vapor pressure at daily max liq surface temp T_{LX} (P _{VX} psia)	3.406	3.768	4.476	5.370	6.273	7.035	7.266	7.149	6.367	5.155	4.096	3.473	5.165
vapor pressure at daily min liq surface temp $T_{LN}\left(P_{VN} extsf{psia} ight)$	2.690	2.866	3.287	3.803	4.461	5.013	5.249	5.202	4.706	3.845	3.145	2.746	3.829
daily vapor pressure range (ΔP_V)	0.7159	0.9018	1.1887	1.5669	1.8116	2.0216	2.0169	1.9461	1.6607	1.3103	0.9507	0.7269	1.3361
vapor space expansion factor (K_E)	0.1095	0.1355	0.1745	0.2287	0.2686	0.3084	0.3119	0.2996	0.2479	0.1912	0.1407	0.1107	0.1949
vapor molecular weight (M _v lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	8,702	7,860	8,702	8,421	8,702	8,421	8,702	8,702	8,421	8,702	8,421	8,702	102,456
monthly turnovers (N/month) with avg = total annual	1.04	0.94	1.04	1.01	1.04	1.01	1.04	1.04	1.01	1.04	1.01	1.04	12.27
vented vapor saturation factor (K _s)	0.3285	0.3105	0.2783	0.2465	0.2184	0.1993	0.1932	0.1952	0.2127	0.2494	0.2920	0.3241	0.2496
vent setting correction factor (K _B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W_v lb/ft ³)	0.0276	0.0298	0.0342	0.0396	0.0455	0.0505	0.0523	0.0517	0.0470	0.0391	0.0322	0.0282	0.0390
standing storage losses (L _s lb/month & avg is lb/yr)	192.65	187.28	238.11	266.75	317.20	340.29	364.11	360.16	316.69	272.24	217.28	196.24	3269.00
working losses (L _w lb/month & avg is lb/yr)	180.43	175.40	223.01	249.82	297.08	318.70	341.01	337.31	296.59	254.96	203.50	183.79	3061.60
total losses (L _T lb/month & avg is lb/yr)	373.08	362.69	461.12	516.57	614.28	659.00	705.12	697.47	613.28	527.20	420.78	380.02	6330.60
max hourly Q in bbl/hour	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	0.243	0.261	0.300	0.347	0.399	0.443	0.458	0.453	0.412	0.343	0.283	0.247	
breathing/standing loss (L _s lb/hr)	0.259	0.279	0.320	0.429	0.514	0.597	0.606	0.582	0.477	0.366	0.302	0.264	
max hourly total loss (L _T lb/hr)	0.501	0.540	0.620	0.776	0.913	1.040	1.064	1.035	0.889	0.709	0.584	0.511	

L_s sum months L_w sum months L_T sum months 3061.60

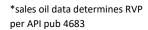
6330.60

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions Summary:

3269.00

avg lbs/hr max lbs/hr lbs/yr Standing/Breathing Loss Ls 0.365 0.606 3,200.559 max hourly total loss may not add up to $L_{S} + L_{W}$ as their max values may be in Working Loss L_w 0.342 0.458 2,997.505 different months Total Loss L_T 0.708 1.064 6,198.065



Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	1c-07-OST-CV through 1e-12-OST-CV
Tank Description	2000 BBL Dry Oil Tank (ABJ-1119A/B/C)
Company Name	Denbury Onshore, LLC

Jackson, MS	Major City for Meterological Data
300	Site Elevation (ft)
14.537	Atmospheric Pressure (P _A psia)
crude oil	Table 7.1-2 Liquid
6.00	RVP*
39.7	API gravity*
60.0	°F basis for gv*
	bubble point psia
39.7	API gravity at 60F
43.0	API gravity at 100F

Working Loss Product Factor (K $_P$)
working loss turnover factor K $_{N}$

0.75 0.197

Tank Orientation	Vertical	Tank Shell Color/Shade	Aluminum - Diffuse
Tank Diameter (D ft)	29.75	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	16.00	Tank Roof Color/Shade	Aluminum - Diffuse
Roof Height (H _R ft)	0.93	Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	15.00	Roof Type	vertical tank with cone roof
Avg Liquid Height (H _L ft)	7.50	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	1,825,000.00
actual tank pressure (P ₁ psig)	0.0	Annual Turnovers, N	982.61
Shell Paint Solar Absorptance (S _A)	0.64	Annual Hours	8,760
Roof Paint Solar Absorptance (R _A)	0.64	tank max liquid volume (V _{LX} ft ³)	10,426.90
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H $_{vo}$ ft)	8.810
roof outage (H _{RO} ft)	0.3099	vapor space volume (V _v ft ³)	6,123.99

Antoine constants (log ₁₀, mmHg, °C)

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	Α	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000		0.000	0.000			

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T _{AX} °F)	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T_{AN} °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T _{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T _B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T _v °F)	51.69	56.60	65.64	75.62	84.92	91.87	94.02	92.96	85.94	73.46	60.92	52.58	73.85
daily ambient temperature range ($\Delta T_A ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range ($\Delta T_v ^{\circ} R$)	23.67	28.35	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.39	27.48	23.43	33.06
daily average liquid surface temperature (T _{LA} °F)	49.97	54.32	62.63	71.75	80.69	87.43	89.70	88.91	82.48	70.69	58.89	50.99	70.70
daily maximum liquid surface temperature (T_{LX} °F)	55.89	61.41	70.90	81.31	90.45	97.38	99.33	98.29	91.20	78.79	65.76	56.85	78.96
daily minimum liquid surface temperature (T _{LN} °F)	44.05	47.24	54.37	62.19	70.93	77.49	80.08	79.53	73.77	62.59	52.02	45.13	62.44
vapor pressure at daily avg liq surface temp T _{LA} (P _{VA} psia)	3.048	3.317	3.881	4.587	5.373	6.033	6.269	6.186	5.543	4.500	3.618	3.109	4.501
vapor pressure at daily max liq surface temp T_{LX} (P _{vx} psia)	3.418	3.794	4.517	5.431	6.348	7.122	7.352	7.229	6.429	5.198	4.113	3.480	5.213
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	2.711	2.888	3.319	3.850	4.519	5.080	5.316	5.265	4.756	3.879	3.172	2.770	3.867
daily vapor pressure range (ΔP_v)	0.7067	0.9057	1.1976	1.5815	1.8294	2.0418	2.0363	1.9638	1.6739	1.3191	0.9409	0.7107	1.3462
vapor space expansion factor (K_E)	0.1080	0.1359	0.1757	0.2309	0.2719	0.3128	0.3164	0.3036	0.2504	0.1925	0.1392	0.1081	0.1965
vapor molecular weight (M _v lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	870,170	785,960	870,170	842,100	870,170	842,100	870,170	870,170	842,100	870,170	842,100	870,170	10,245,550
monthly turnovers (N/month) with avg = total annual	83.45	75.38	83.45	80.76	83.45	80.76	83.45	83.45	80.76	83.45	80.76	83.45	982.61
vented vapor saturation factor (K _s)	0.4127	0.3924	0.3556	0.3183	0.2850	0.2620	0.2546	0.2572	0.2787	0.3225	0.3718	0.4079	0.3224
vent setting correction factor (K _B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W_v lb/ft ³)	0.0278	0.0299	0.0344	0.0399	0.0460	0.0510	0.0528	0.0522	0.0473	0.0393	0.0324	0.0283	0.0393
standing storage losses (L _s lb/month & avg is lb/yr)	333.97	325.11	414.01	464.63	552.79	593.16	634.44	627.20	550.87	472.95	376.90	340.07	5686.09
working losses (L _w lb/month & avg is lb/yr)	3574.15	3479.35	4430.75	4972.41	5915.92	6347.92	6789.73	6712.27	5895.37	5061.50	4033.52	3639.41	60852.28
total losses (L _T lb/month & avg is lb/yr)	3908.13	3804.46	4844.76	5437.03	6468.70	6941.07	7424.17	7339.47	6446.24	5534.45	4410.41	3979.48	66538.38
max hourly Q in bbl/hour	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	1169.58	
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	24.361	26.256	30.200	35.021	40.322	44.709	46.278	45.750	41.522	34.499	28.409	24.806	1
breathing/standing loss (L _s lb/hr)	0.449	0.484	0.556	0.749	0.909	1.066	1.084	1.039	0.843	0.636	0.523	0.457]
max hourly total loss (L _T lb/hr)	24.810	26.740	30.756	35.770	41.231	45.775	47.363	46.789	42.365	35.135	28.932	25.263]

L_{s} sum months L_{w} sum months L_{T} sum months

60852.28

66538.38

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions Summary:

5686.09

ons	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.635	1.084	5,565.369	
	Working Loss L _w	6.799	46.278	59.560.301	max hourly total loss may not add up to L _s + L _w as their max values may be in different months
	Total Loss L _T	7.434	47.363	65,125.670	

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	2a-07-WVF-CV
Tank Description	Water Vortex Flume (ABM-1122)
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	
RVP*	6.00
API gravity*	39.7
°F basis for gv*	60.0
bubble point psia	
API gravity at 60F	39.7
API gravity at 100F	43.0

Working Loss Product Factor (K_P)	0.75
working loss turnover factor K $_{\rm N}$	1.000

*sales oil data determines RVP per API pub 4683

Tank Orientation	Vertical	Tank Shell Color/Shade	Aluminum - Diffuse
Tank Diameter (D ft)	4.00	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	42.50	Tank Roof Color/Shade	Aluminum - Diffuse
Roof Height (H _R ft)	0.13	Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	41.50	Roof Type	vertical tank with cone roof
Avg Liquid Height (H _L ft)	20.75	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	18,268,250.00
actual tank pressure (P , psig)	0.0	Annual Turnovers, N	196657.90
Shell Paint Solar Absorptance (S _A)	0.64	Annual Hours	8,760
Roof Paint Solar Absorptance (R_A)	0.64	tank max liquid volume (V _{LX} ft ³)	521.50
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H _{vo} ft)	21.792
roof outage (H _{RO} ft)	0.0417	vapor space volume (V $_V$ ft 3)	273.84

Antoine constants (log 10, mmHg, °C)

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	A	В	С
Crude Oil	0.100	50.000	0.04995	0.27678	11.087	5082.567	0.000
Water	99.900	18.015	17.99700	99.72322	8.108	1750.300	235.000
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000		18.047	100.000		•	

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T $_{\rm AN}$ °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T_{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T_B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T $_{ m V}$ °F)	49.95	54.30	62.60	71.71	80.64	87.38	89.65	88.86	82.45	70.66	58.87	50.97	70.67
daily ambient temperature range ($\Delta T_A ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range (ΔT_{V} °R)	25.19	29.19	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.64	29.12	25.41	33.06
daily average liquid surface temperature (T_{LA} °F)	49.10	53.17	61.11	69.79	78.55	85.19	87.52	86.86	80.74	69.29	57.87	50.18	69.11
daily maximum liquid surface temperature (T $_{LX}$ °F)	55.40	60.47	69.38	79.35	88.31	95.13	97.14	96.24	89.45	77.45	65.15	56.53	77.37
daily minimum liquid surface temperature (T_{LN} °F)	42.80	45.87	52.85	60.24	68.79	75.24	77.89	77.47	72.02	61.13	50.59	43.83	60.85
vapor pressure at daily avg liq surface temp $T_{\text{\tiny LA}}$ (P_{\text{\tiny VA}} psia)	0.175	0.203	0.270	0.365	0.488	0.605	0.651	0.638	0.524	0.359	0.241	0.182	0.356
vapor pressure at daily max liq surface temp $T_{LX}\left(P_{VX}\text{psia}\right)$	0.220	0.264	0.360	0.501	0.668	0.825	0.877	0.854	0.692	0.471	0.311	0.229	0.470
vapor pressure at daily min liq surface temp T_{LN} (P_{VN} psia)	0.138	0.155	0.201	0.262	0.352	0.438	0.478	0.471	0.393	0.270	0.185	0.143	0.267
daily vapor pressure range (ΔP_V)	0.0823	0.1090	0.1589	0.2395	0.3155	0.3874	0.3995	0.3822	0.2992	0.2008	0.1262	0.0860	0.2023
vapor space expansion factor (K _E)	0.0552	0.0645	0.0746	0.0891	0.0950	0.1008	0.0991	0.0962	0.0859	0.0759	0.0651	0.0558	0.0768
vapor molecular weight (M _v lb/lbmole)	18.56	18.53	18.46	18.40	18.35	18.32	18.31	18.31	18.34	18.41	18.49	18.55	18.41
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	8,710,402	7,867,460	8,710,402	8,429,421	8,710,402	8,429,421	8,710,402	8,710,402	8,429,421	8,710,402	8,429,421	8,710,402	###########
monthly turnovers (N/month) with avg = total annual	16,702.45	15,086.09	16,702.45	16,163.66	16,702.45	16,163.66	16,702.45	16,702.45	16,163.66	16,702.45	16,163.66	16,702.45	196,657.90
vented vapor saturation factor (K_s)	0.8320	0.8100	0.7623	0.7036	0.6394	0.5887	0.5707	0.5758	0.6228	0.7072	0.7825	0.8263	0.7085
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W_V lb/ft ³)	0.0006	0.0007	0.0009	0.0012	0.0015	0.0019	0.0020	0.0020	0.0017	0.0012	0.0008	0.0006	0.0012
standing storage losses (L _s lb/month & avg is lb/yr)	0.27	0.28	0.41	0.53	0.71	0.84	0.93	0.92	0.74	0.54	0.36	0.28	6.82
working losses (L _w lb/month & avg is lb/yr)	3877.07	4025.37	5811.21	7440.72	10097.47	11937.93	13219.78	12967.48	10453.19	7574.64	5054.88	4024.95	96484.71
total losses (L_T lb/month & avg is lb/yr)	3877.34	4025.66	5811.62	7441.25	10098.18	11938.77	13220.72	12968.40	10453.93	7575.18	5055.24	4025.24	96491.53
max hourly Q in bbl/hour	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	11707.53	
max hourly working loss at P_{VX} & Q/hr & $K_{N}\texttt{=}1$ (L_w lb/hr)	5.211	5.990	7.811	10.334	13.572	16.580	17.769	17.429	14.518	10.181	7.021	5.410	1
breathing/standing loss (L _s lb/hr)	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	1
max hourly total loss (L _T lb/hr)	5.211	5.991	7.811	10.335	13.573	16.582	17.770	17.431	14.519	10.182	7.021	5.410]

$\rm L_{S}$ sum months	$\rm L_{\rm w}$ sum months	L_T sum months
6.82	96484.71	96491.53

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

~ Emission

ions Summary:		avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.001	0.001	6.265	
ſ	Working Loss L _w	10.118	17.769	88.635.699	max hourly total loss may not add up to $L_s + L_w$ as their max values may be different months
	Total Loss L _T	10.119	17.770	88,641.964	

Certificate of Analysis

Number: 172-24050260-002A

May 28, 2024

Kevin Hendricks Denbury 202 S 4th Street West Baker, MT 59313

Station Name: MS Tinsley EOR Facility Sample Point: FLARE INLET GAS ZZZ-181 Method: GPA 2286 Analyzed: 05/23/2024 13:50:49 Sampled By:John FielderSample Of:GasSpotSample Date:05/07/2024 10:45Sample Conditions: 71 °FPO/Ref. No:4300204782

Analytical Data								
Components	Mol. %	Wt. %	GPM at 14.696 psia					
Nitrogen	4.6082	2.9590		GPM TOTAL C2+	0.383			
Methane	0.0712	0.0262						
Carbon Dioxide	94.3253	95.1533						
Ethane	0.0062	0.0043	0.0017					
Propane	0.0183	0.0185	0.0051					
Iso-Butane	0.1069	0.1424	0.0351					
n-Butane	0.0806	0.1074	0.0255					
Iso-Pentane	0.0830	0.1373	0.0304					
n-Pentane	0.1104	0.1826	0.0401					
Hexanes	0.1234	0.2437	0.0508					
n-Hexane	0.1017	0.2009	0.0419					
Benzene	0.0405	0.0725	0.0114					
Cyclohexane	0.0542	0.1046	0.0185					
Heptanes	0.1363	0.3131	0.0631					
Methylcyclohexane	0.0427	0.0961	0.0172					
Toluene	0.0149	0.0315	0.0050					
Octanes	0.0492	0.1288	0.0253					
Ethylbenzene	0.0004	0.0010	0.0002					
Xylenes	0.0030	0.0073	0.0012					
Nonanes	0.0231	0.0679	0.0130					
Decanes Plus	0.0005	0.0016	0.0003					
	100.0000	100.0000	0.3858					
Calculated Physical P	roperties		Total	C10+				
Calculated Molecular W	/eight		43.63	142.28				
GPA 2172 Calculation Calculated Gross BTL		96 nsia & 6	۱°F					
Higher Heating Value, F			45.34	7742.9				
Water Sat. Gas Base B		. •	44.57	7607.8				
	-		-					
Relative Density Real G	Gas		1.5140	4.9126				

11 il kia tim

Data reviewed by: Mo Milton, Laboratory Technician

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Normalized Component Calculation

Flare Gas Analysis (EPN: 4-07-F); Southern Petroleum Laboratories Report No.: 172-24050260-002A

							Partial
		Normalized		Fuel	Normalized	Component	Heating
COMPONENT	mole %	mole %	COMPONENT MW	Weight	WT %	BTU/scf	Values
Water	0.0000	0.0000	18	0.00	0.0000	0	0
Nitrogen	4.6082	0.0000	28.0134	0.00	0.0000	0	0
Carbon Dioxide	94.3253	98.8731	44.01	43.51	98.0481	0	0
Methane	0.0712	0.0746	16.043	0.01	0.0270	1010	1
Ethane	0.0062	0.0065	30.07	0.00	0.0044	1770	0
Hydrogen Sulfide	0.0000	0.0090	34.08	0.00	0.0069	637	0
Propane	0.0183	0.0192	44.097	0.01	0.0191	2516	0
I-Butane	0.1069	0.1121	58.123	0.07	0.1468	3252	4
N-Butane	0.0806	0.0845	58.123	0.05	0.1106	3262	3
I-Pentane	0.0830	0.0870	72.15	0.06	0.1414	4001	3
N-Pentane	0.1104	0.1157	72.15	0.08	0.1881	4009	5
Other/Iso Hexanes	0.1234	0.1293	86.177	0.11	0.2512	4750	6
N-Hexane	0.1017	0.1066	86.177	0.09	0.2070	4756	5
Methylcyclopentane	0.0000	0.0000	84.1608	0.00	0.0000	4501	0
Benzene	0.0405	0.0425	78.114	0.03	0.0747	3742	2
Cyclohexane	0.0542	0.0568	84.1608	0.05	0.1077	4482	3
Heptane	0.1363	0.1429	100.204	0.14	0.3226	5503	8
Methylcyclohexane	0.0427	0.0448	98.188	0.04	0.0990	5216	2
Toluene	0.0149	0.0156	92.141	0.01	0.0324	4475	1
Iso-Octane/224-Trimethylpentane	0.0000	0.0000	114.231	0.00	0.0000	6232	0
Octanes	0.0492	0.0516	114.231	0.06	0.1327	6249	3
Ethylbenzene	0.0004	0.0004	106.167	0.00	0.0010	5222	0
Xylenes	0.0030	0.0031	106.167	0.00	0.0075	5209	0
Nonanes	0.0231	0.0242	128.258	0.03	0.0700	6997	2
Decanes Plus	0.0005	0.0005	142.285	0.00	0.0017	7743	0
TOTALS	100.0000	100.0000	MW=	44.38	100.0000	btu/scf =	47.317101

sg	1.5304
VOC wt%	1.9136
Toxic wt%	0.3227

DRILLING AND PRODUCTION PRACTICE

1944

LIBRARY AMERICAN PETROLEUM INSTITUTE

Sponsored by the

CENTRAL COMMITTEE ON DRILLING AND PRODUCTION PRACTICE

DIVISION OF PRODUCTION AMERICAN PETROLEUM INSTITUTE

Published by AMERICAN PETROLEUM INSTITUTE 50 West 50th Street New York 20, N. Y.

1945

To calculate the properties of the interstitial water in the reservoir, it is observed from Table 4 that the change in formation volume of pure water at 3,000 psi, absolute, and 200 deg F (due to the solution of 15.4 cu ft per bbl of gas) is 1.0380 minus 1.0271, or 0.0059 bbl per bbl. As the solubility in the interstitial water is only 13.6 cu ft per bbl, the change in formation volume would be expected to be $\frac{13.6}{15.4}$ (0.0059), or 0.0052.

Hence, the formation volume of the interstitial water is calculated to be 1.0271 plus 0.0052, or 1.0323 bbl per bbl. A similar calculation at a reservoir pressure of 2,000 psi, absolute, yields a formation volume of 1.0340 bbl per bbl---which indicates that, even though the interstitial water contains less dissolved gas at 2,000 psi, absolute, than it did at 3,000 psi, absolute, its volume is greater at the lower pressure. This result is interesting, because it is opposite to the behavior of natural-gas-crude-oil mixtures.

The compressibility of the saturated interstitial water is found from Fig. 2 by multiplying the correction factor for the gas solubility, 1.12 for a 13.6-cu-ft-per-bbl mixture, times the compressibility, 3.12 times 10⁻⁶, of pure water, which gives 3.50 times 10⁻⁶ bbl per bbl per lb per sq in.

The use of data on the formation volumes of the saturated interstitial water, together with the data on the compressibilities, permits accurate accounting of the interstitial-water behavior for material-balance calculations when the accuracy of the other data justifies the additional refinement.

TABLE 4

Formation Volumes of Pure Water and Mixtures of Natural Gas and Water

Formation Volumes-Barrel Per Barrel

Saturation Pressure	100 Deg F	150 Deg F.	200 Deg F	250 Deg F		
(PSI, Absolute)	N	Natural Gas and Water				
5,000	0.9989	1,0126	1.0801	1.0522		
4,000	1,0003	1.0140	1.0316	1.0587		
3.000	1.0017	1.0154	1,0330	1.0552		
2,000	1.0081	1,0168	1.0345	1.0568		
1,000	1.0045	1.0188	1,0361	1.0584		
Pressure						
Pressure (PSI, Absolute)		Pure V	Vater *			
(PSI, Absolute)	0.9910	Pure V 1.0039	Vater * 	1.0418		
(PSI, Absolute) 5,000	0.9910		<u>د</u>			
(PSI, Absolute) 5,000 4,000		1.0039	1,0210	1.0452		
(PSI, Absolute) 5,000 4,000 3,000	0,9938	1.0039 1.0067	1.0210 1.0240	1.0452 1.0487		
(PSI, Absolute) 5,000 4,000	0.9938 0.9966	1.0039 1.0067 1.0095	1.0210 1.0240 1.0271	1.0452 1.0487 1.0523		
(PSI, Absolute) 5,000 4,000 3,000 2,000	0.9938 0.9966 0.9995 1.0025	1.0039 1.0067 1.0095 1.0125	1.0210 1.0240 1.0271 1.0304	1.0452 1.0487 1.0523		
(PSI, Absolute) 5,000 4,000 3,000 2,000 1,000	0.9938 0.9966 0.9995 1.0025 es-	1.0039 1.0067 1.0095 1.0125	1.0210 1.0240 1.0271 1.0304	1.0418 1.0452 1.0487 1.0523 1.0560		

Water production from so-called "clean" gas wells or high gas-oil-ratio (distillate) wells may be a combination of the water that exists as vapor in the reservoir gas and liquid water that is brought to the surface by mechanical entrainment in the gas. The water produced by condensation is free of salts, whereas the entrained water may contain a considerable amount of dissolved salts.

The amount of water that will be produced from a well as vapor can be determined from Table 5 and Fig. 8. For example, consider the case of a gas reservoir at 3,000 psi, absolute, and 200 deg F, in which the interstitial water has a salinity of 30,000 ppm. From Table 5 and Fig. 3, the amount of water vapor in the formation gas is shown to be 0.82 bbl per 1,000 MCF of dry gas when vaporized from pure water, or 0.82 times 0.93, which equals 0.76 bbl per 1,000 MCF for the gas in equilibrium with the saline interstitial water. If the foregoing reservoir gas is put, through a trap operating at 500 psi, absolute, and 100 deg F, the amount of water which can remain as vapor in the gas at these conditions is shown in Table 5 to be 0.31 bbl per 1,000

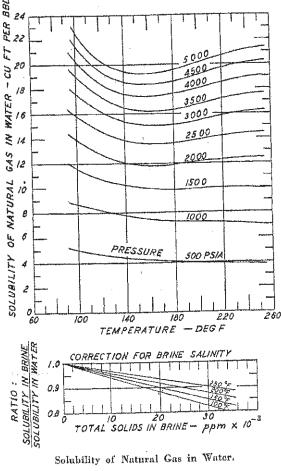


FIG. 1

176

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	2b-07-WVT-CV
Tank Description	9,700 BBL Water Vortex Tank (ABM-1120)
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	
RVP*	
API gravity*	
°F basis for gv*	
bubble point psia	
API gravity at 60F	
API gravity at 100F	
Working Loss Product Factor (K _P)	0.75
working loss turnover factor K $_N$	0.182

*sales oil data determines RVP per API pub 4683

Tank Orientation	Vertical	Tank Shell Color/Shade	Aluminum - Diffuse
Tank Diameter (D ft)	46.75	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	32.00	Tank Roof Color/Shade	Aluminum - Diffuse
Roof Height (H _R ft)	1.46	Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	31.00	Roof Type	vertical tank with cone roof
Avg Liquid Height (H $_{L}$ ft)	15.50	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	18,250,000.00
actual tank pressure (P ₁ psig)	0.0	Annual Turnovers, N	1925.40
Shell Paint Solar Absorptance (S _A)	0.64	Annual Hours	8,760
Roof Paint Solar Absorptance (R_A)	0.64	tank max liquid volume (V _{LX} ft^3)	53,212.64
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H _{vo} ft)	16.987
roof outage (H _{RO} ft)	0.4870	vapor space volume (V _v ft ³)	29,158.77

Antoine constants (log 10, mmHg, °	C)
------------------------------------	----

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	А	В	С
Water	100.000	18.015	18.01500	100.00000	8.108	1750.300	235.000
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000	•	18.015	100.000			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature $(T_{AX}\ ^{\circ}F)$	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T_{AN} °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T_{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T_B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T $_{ m V}$ °F)	51.50	56.36	65.31	75.19	84.46	91.39	93.55	92.52	85.57	73.16	60.70	52.41	73.50
daily ambient temperature range ($\Delta T_A \circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range (ΔT_v °R)	23.72	28.35	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.39	27.50	23.61	33.06
daily average liquid surface temperature (T_{LA} °F)	49.88	54.20	62.47	71.54	80.46	87.19	89.47	88.69	82.30	70.54	58.78	50.90	70.53
daily maximum liquid surface temperature (T _{LX} °F)	55.81	61.29	70.73	81.10	90.22	97.13	99.09	98.07	91.01	78.64	65.66	56.80	78.79
daily minimum liquid surface temperature (T_{LN} °F)	43.95	47.11	54.20	61.98	70.70	77.24	79.84	79.30	73.58	62.44	51.91	45.00	62.26
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	0.177	0.208	0.280	0.383	0.515	0.639	0.687	0.670	0.547	0.370	0.245	0.184	0.370
vapor pressure at daily max liq surface temp T_{LX} (P _{vx} psia)	0.220	0.268	0.372	0.526	0.703	0.871	0.924	0.896	0.721	0.485	0.313	0.228	0.488
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	0.141	0.160	0.208	0.275	0.372	0.463	0.505	0.496	0.410	0.279	0.191	0.147	0.278
daily vapor pressure range (ΔP_V)	0.0788	0.1086	0.1646	0.2508	0.3315	0.4077	0.4196	0.4002	0.3112	0.2057	0.1217	0.0811	0.2099
vapor space expansion factor (K_E)	0.0520	0.0627	0.0749	0.0897	0.0959	0.1021	0.1004	0.0973	0.0866	0.0756	0.0616	0.0519	0.0772
vapor molecular weight (M _v lb/lbmole)	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	8,701,700	7,859,600	8,701,700	8,421,000	8,701,700	8,421,000	8,701,700	8,701,700	8,421,000	8,701,700	8,421,000	8,701,700	###########
monthly turnovers (N/month) with avg = total annual	163.53	147.70	163.53	158.25	163.53	158.25	163.53	163.53	158.25	163.53	158.25	163.53	1,925.40
vented vapor saturation factor (K_s)	0.8625	0.8424	0.7989	0.7438	0.6833	0.6347	0.6178	0.6236	0.6702	0.7502	0.8191	0.8579	0.7502
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0006	0.0007	0.0009	0.0012	0.0016	0.0019	0.0021	0.0020	0.0017	0.0012	0.0008	0.0006	0.0012
standing storage losses (L _s lb/month & avg is lb/yr)	30.43	31.94	46.79	60.82	83.11	98.64	109.09	106.65	85.22	60.99	40.07	31.56	785.31
working losses (L _w lb/month & avg is lb/yr)	691.71	726.11	1063.57	1382.48	1889.18	2241.98	2479.64	2424.05	1936.99	1386.23	910.81	717.28	17850.02
total losses (L _T lb/month & avg is lb/yr)	722.14	758.05	1110.36	1443.30	1972.29	2340.62	2588.73	2530.70	2022.21	1447.22	950.88	748.84	18635.33
max hourly Q in bbl/hour	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	11695.83	
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	5.101	5.929	7.844	10.536	13.933	17.086	18.287	17.878	14.762	10.224	6.941	5.290	
breathing/standing loss (L _s lb/hr)	0.041	0.048	0.065	0.097	0.126	0.153	0.157	0.150	0.119	0.082	0.056	0.042	
max hourly total loss (L _T lb/hr)	5.142	5.976	7.909	10.633	14.059	17.239	18.445	18.028	14.880	10.305	6.997	5.332]

$\rm L_S$ sum months	$\rm L_{\rm w}$ sum months	L_T sum months
785.31	17850.02	18635.33

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

_ Emission

ons S	ummary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.082	0.157	717.295	
Γ	Working Loss L _w	1.861	18.287	16.304.054	max hourly total loss may not add up to L _s + L _w as their max values may be different months
	Total Loss L _T	1.943	18.445	17,021.349	

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	2d-07-WST-CV & 2e-07-WST-CV
Tank Description	5000 BBL Produced Water Tank (1129A/B)
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	
RVP*	
API gravity*	
°F basis for gv*	
bubble point psia	
API gravity at 60F	
API gravity at 100F	
Working Loss Product Factor (K _P)	0.75
working loss turnover factor K _N	0.183

nover factor K_N 0.183 *sales oil data determines RVP

per API pub 4683

Tank Orientation	Vertical	Tank Shell Color/Shade	Aluminum - Diffuse
Tank Diameter (D ft)	38.70	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	24.00	Tank Roof Color/Shade	Aluminum - Diffuse
Roof Height (H _R ft)	1.21	Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	23.00	Roof Type	vertical tank with cone roof
Avg Liquid Height (H _L ft)	11.50	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	9,125,000.00
actual tank pressure (P ₁ psig)	0.0	Annual Turnovers, N	1893.50
Shell Paint Solar Absorptance (S _A)	0.64	Annual Hours	8,760
Roof Paint Solar Absorptance (R _A)	0.64	tank max liquid volume (V _{LX} ft ³)	27,054.51
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H $_{VO}$ ft)	12.903
roof outage (H _{RO} ft)	0.4031	vapor space volume (V $_V$ ft 3)	15,177.73

Antoine constants (log $_{10}$, mmHg, °C)

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	А	В	С
Water	100.000	18.015	18.01500	100.00000	8.108	1750.300	235.000
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000	•	18.015	100.000			*

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature $(T_{AX}\ ^{\circ}F)$	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T_{AN} °F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T_{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T_B °F)	48.25	52.04	59.63	67.88	76.45	82.99	85.38	84.85	79.03	67.92	56.87	49.39	67.55
average vapor temperature (T $_{ m V}$ °F)	51.58	56.46	65.44	75.37	84.65	91.59	93.75	92.71	85.72	73.28	60.79	52.48	73.65
daily ambient temperature range ($\Delta T_A \ ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range (ΔT_{V} °R)	23.67	28.35	33.06	38.23	39.04	39.78	38.50	37.53	34.87	32.39	27.48	23.52	33.06
daily average liquid surface temperature (T_{LA} °F)	49.92	54.25	62.54	71.63	80.55	87.29	89.56	88.78	82.37	70.60	58.83	50.94	70.60
daily maximum liquid surface temperature (T_{LX} °F)	55.83	61.34	70.80	81.18	90.31	97.23	99.19	98.16	91.09	78.70	65.70	56.82	78.86
daily minimum liquid surface temperature (T_{LN} °F)	44.00	47.16	54.27	62.07	70.79	77.34	79.94	79.40	73.66	62.51	51.96	45.06	62.34
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	0.177	0.208	0.280	0.384	0.516	0.641	0.689	0.672	0.548	0.371	0.246	0.184	0.371
vapor pressure at daily max liq surface temp T_{LX} (P _{vx} psia)	0.221	0.269	0.373	0.527	0.705	0.874	0.927	0.898	0.723	0.486	0.313	0.229	0.489
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	0.142	0.160	0.208	0.276	0.373	0.465	0.506	0.497	0.411	0.280	0.191	0.148	0.278
daily vapor pressure range (ΔP_V)	0.0787	0.1088	0.1649	0.2515	0.3324	0.4088	0.4207	0.4012	0.3119	0.2061	0.1218	0.0809	0.2103
vapor space expansion factor (K_E)	0.0519	0.0628	0.0749	0.0897	0.0960	0.1021	0.1005	0.0974	0.0866	0.0756	0.0615	0.0517	0.0772
vapor molecular weight (M _v lb/lbmole)	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	4,350,850	3,929,800	4,350,850	4,210,500	4,350,850	4,210,500	4,350,850	4,350,850	4,210,500	4,350,850	4,210,500	4,350,850	51,227,750
monthly turnovers (N/month) with avg = total annual	160.82	145.25	160.82	155.63	160.82	155.63	160.82	160.82	155.63	160.82	155.63	160.82	1,893.50
vented vapor saturation factor (K_s)	0.8918	0.8754	0.8391	0.7921	0.7390	0.6951	0.6797	0.6850	0.7274	0.7978	0.8562	0.8881	0.7978
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0006	0.0007	0.0009	0.0012	0.0016	0.0020	0.0021	0.0020	0.0017	0.0012	0.0008	0.0006	0.0012
standing storage losses (L _s lb/month & avg is lb/yr)	16.87	17.72	25.96	33.76	46.15	54.77	60.56	59.20	47.29	33.83	22.22	17.49	435.82
working losses (L _w lb/month & avg is lb/yr)	346.80	364.19	533.69	694.06	948.57	1125.78	1244.98	1216.88	972.07	695.43	456.73	359.59	8958.77
total losses (L_T lb/month & avg is lb/yr)	363.67	381.91	559.65	727.83	994.72	1180.54	1305.54	1276.08	1019.36	729.26	478.95	377.08	9394.58
max hourly Q in bbl/hour	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	5847.92	
max hourly working loss at P_{VX} & Q/hr & $K_{N}\text{=}1$ (L_w lb/hr)	2.554	2.969	3.930	5.282	6.986	8.567	9.169	8.962	7.397	5.121	3.476	2.648	
breathing/standing loss (L _s lb/hr)	0.023	0.026	0.036	0.054	0.071	0.088	0.090	0.086	0.067	0.045	0.031	0.024	
max hourly total loss (L_T lb/hr)	2.577	2.996	3.966	5.336	7.057	8.655	9.259	9.048	7.465	5.167	3.507	2.672	

L_s sum months L_w sum months L_T sum months 8958.77

9394.58

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions Summary:

435.82

avg lbs/hr max lbs/hr lbs/yr Standing/Breathing Loss Ls 0.045 0.090 398.002 max hourly total loss may not add up to $L_{S} + L_{W}$ as their max values may be in Working Loss L_w 0.934 9.169 8,181.377 different months Total Loss L_T 0.979 9.259 8,579.379

Weighted Average for Oil Storage Tank Vapors to Control Flare (EPN: 3-07-F)

Total Working & Standing Losses:161.19Ib/hrTotal Oil Flash Vapors:8000.00SCFHTotal Stream Flowrate:9372.06SCFH

June 1998 RG-109

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

printed on recycled paper

New Source Review Permits Division

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.

Waste Stream	Destruction/Removal Efficiency (DRE)								
VOC	98 percent (gene	98 percent (generic)							
	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide								
H ₂ S	98 percent								
NH,	case by case								
со	case by case								
Air Contaminants	Emission Factors								
thermal NO _x	steam-assist:	high Btu Iow Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu						
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu						
fuel NO _x	NO _x is 0.5 wt pe	ercent of inlet N	H ₃ , other fuels case by case						
со	steam-assist:	high Btu Iow Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu						
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu						
PM	none, required to	none, required to be smokeless							
SO ₂	100 percent S in	fuel to SO ₂							

Table 4. Flare Factors

Technical Guidance Package for Chemical Sources

Flare Sources

Texas Natural Resource Conservati on Commissio n

John Hall, Chairman Pam Reed, Commissioner Peggy Garner, Commissioner Dan Pearson, Executive Director

Compiled by TNRCC Chemical Section Engineers November 1994

Published and distributed by the Texas Natural Resource Contervation Commission Post Office Box 13087 Austin, Texas 78711-3087 (512) 239-1250

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granied. The commission would appreciate acknowledgement.

The TNRCC is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex,

وی - مرود و و و و و و و و و و و و و		
	greater than standard destruction efficiencies (>SDE) are claimed. The determinations shall indicate the maximum or minimum values required for flare performance at the claimed efficiency. The determinations shall be made during the testing protocols used to demonstrate >SDE.	
	A. Tip Velocities and Flow rates (maximum)	
	3. Heating Values (minimum).	
4.	The applicant shall install, calibrate, operate and maintain a flow meter to monitor actual stream flow rates to, and calculate tip velocities of, flares for which >SDE are	
	alaimed.	
5.	Records shall be maintained which indicate on a continuous basis the flow rates and heating values of the streams directed to the flares for which >SDE are claimed.	•
6.	Flow rates of streams to flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) flow rates which produce the tip velocities specified in 40 CFR 60.18, or (2) flow rates demonstrated during testing to correspond to the demonstrated flare efficiency.	
7.	Tip velocities of flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) tip velocities specified in 40 CFR 60.18, or (2) tip velocities demonstrated during testing to correspond to the demonstrated flare	
8.	Heating values of streams directed to flares for which >SDE are claimed shall be no less than the greater of the indicated minima; (1) 300 BTU/scf for streams directed to non-assisted flares and 400 BTU/scf for streams directed to assisted flares, or (2) heating values demonstrated during testing to flare of the demonstrated flare efficiency.	
9.	The applicant shall provide vendor data supportive of the claimed flare efficiency.	
·		
F.		
NO : -	and CO Emissions	
<u>iv</u> y z E	and co factors were derived by the Chemical	

The following NO_x and CO factors were derived by the character Section of the New Source Review Division based on data published in the 1983 CMA document entitled, A Report on A Flare Efficiency Study. These factors should be used in estimating NO_x and CO emissions rather than the emission factors found in Section 11.5 of AP-42.

... Table 3: Flare Factors.

9

p

ى ئېرىكىنىڭ ئۆلۈمىيەنىيە ئېرىكىنىڭ ئېرىكىنىڭ ئۆلۈكىنى ئېرىكىنىڭ		·	1
Туре	Naste Gas	NO 167MM Btu	CO Ib/MM Btu
	High Btu (>1000/scf)	0.0485	0.3503
Steam Assisted Steam Assisted	-18007scf) 192-	0.0680	0.3465
	High Btu (>1000/scf)	0.1380	0.2755
Air & Nonassisted		0.0641	0.5496
Air & Nonassisted	18807scf (184-		

Example 2: For the sample case, calculate the mole percent of each constituent in the waste stream for both the average and maximum scenarios by dividing the individual flow rates by the total flow rates and multiplying by 100 percent.

 ,	~	1	+ion	of	constitu	ents	in	mole	percent.	

Table 4: Calc		Vaximum Case		
	Average Case		scfm	• mole §
	scfm	mole %		5.08
Butane+	10.16	. 5.08	12.70	
to an and the second to an and the second to be set of the second to be second t	5.94	. 2.97	7.43	2.97
Propylene	5.08	2.54	6.35	2.54
Propane		42.37	105.93	42.37
Ethylene	84.74		46.50	18.64
Ethane	37.28	18.64	والمحافظ والمراجع والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحاف	11.02
Eydrogen	. 22.04	11.02	27.55	
,Ammonia	4.24	2.12	5.30	2.12
	30.50	15.26	38.13	15.16
Inerts		100.00	250.00	100.00
Totals	200.00	100.00		

In this case, our calculations are simplified since the average and maximum case waste streams have the same compositions. If they were of different composition, the following heating value calculations would be required for both cases. Note that the maximum case shows the maximum vent stream to the flare under normal operating conditions for the purpose of calculating emissions from the flare (upset and maintenance conditions are not considered).

Next, estimate the net, or lower, heating value of the waste stream

10

Table 13.5-1 (English Units). THC, NOx AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS FOR CERTAIN CHEMICAL MANUFACTURING PROCESSES^a

Pollutant	SCC ^e	Emissions Factor Value	Emissions Factor Units	Grade or Representativeness
THC, elevated flares ^c	30190099;	0.14 ^{b,f}	lb/10 ⁶ Btu	В
THC, enclosed ground flares ^{g,h} Low Percent Load ⁱ	30119701; 30119705; 30119709; 30119741	8.37 ^j or 3.88e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
THC, enclosed ground flares ^{g,h} Normal to High Percent Load ⁱ	50117741	2.56 ^j or 1.20e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
Nitrogen oxides, elevated flares ^d		0.068 ^{b,k}	1b/10 ⁶ Btu	В
Soot, elevated flares ^d		$0 - 274^{b}$	μg/L	В

- ^a All of the emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the THC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factors are representative of controlled emissions rates for THC. These values are not representative of the uncontrolled THC routed to the flare from the associated process, and as such, they may not be appropriate for estimating the uncontrolled THC emissions or potential to emit from the associated process.
- ^b Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
- ^c Measured as methane equivalent. The THC emissions factor may not be appropriate for reporting volatile organic compounds (VOC) emissions when a VOC emissions factor exists.
- ^d Soot in concentration values: nonsmoking flares, 0 micrograms per liter ($\mu g/L$); lightly smoking flares, 40 $\mu g/L$; average smoking flares, 177 $\mu g/L$; and heavily smoking flares, 274 $\mu g/L$.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.
- ^g THC measured as propane by US EPA Method 25A.
- ^h These factors apply to well operated ground flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >200 btu/scf net heating value in the vent gas and less than the specified maximum exit velocity. The emissions factor data set had an average destruction efficiency of 99.99%. Based on tests using pure propylene fuel. References 12 through 33 and 39 through 45.
- ⁱ The dataset for these tests were broken into four different test conditions: ramping back and forth between 0 and 30% of load; ramping back and forth between 30% and 70% of load; ramping back and forth between 70% and 100% of load; and a fixed rate maximum load condition. Analyses determined that only the first condition was statistically different. Low percent load is represented by a unit operating at approximately less than 30% of maximum load.
- ^j Heat input is an appropriate basis for combustion emissions factor. However, based on available data, heat input data is not always known, but gas flowrate is generally available. Therefore, the emissions factor is presented in two different forms.
- ^k Factor developed using the higher (gross) heating value of the vent gas.

Table 13.5-2 (English Units). VOC and CO EMISSIONS FACTORS FOR ELEVATED FLARE OPERATIONS FOR CERTAIN REFINERY AND CHEMICAL MANUFACTURING PROCESSES^{a,b}

Pollutant	SCC ^e	Emissions Factor (lb/10 ⁶ Btu) ^f	Representativeness
Volatile organic compounds ^c	30190099; 30600904; 30119701; 30119705; 30119709; 30119741; 30119799; 30130115;	0.66	Poorly
Carbon monoxide ^d	30600201; 30600401; 30600508; 30600903; 30600999; 30601701; 30601801; 30688801; 40600240	0.31	Poorly

^a The emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the VOC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factor is representative of controlled emissions rates for VOC. This values is not representative of the uncontrolled VOC routed to the flare from the associated process, and as such, it may not be appropriate for estimating the uncontrolled VOC emissions or potential to emit from the associated process.

- ^b These factors apply to well operated flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >300 btu/scf net heating value in the vent gas and less than the specified maximum flare tip velocity. The VOC emissions factor data set had an average destruction efficiency of 98.9%, and the CO emissions factor data set had an average destruction efficiency of 99.1% (based on test reports where destruction efficiency was provided). These factors are based on steam-assisted and air-assisted flares burning a variety of vent gases.
- ^c References 4 through 9 and 11.
- ^d References 1, 4 through 8, and 11.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.

Weighted Average for Water Storage Tank Vapors Control Flare (EPN: 4-07-F)

Total Working & Standing Losses:	732.69	lb/hr
Total Brine Flash Vapors:	1041.67	SCFH
Total Oil Flash Vapors:	26.67	SCFH
Total Stream Flowrate:	7334.80	SCFH

Certificate of Analysis

Number: 172-23080183-004A

Aug. 22, 2023

Kevin Hendricks Denbury 202 S 4th Street West Baker, MT 59313

Station Name: MS Tinsley EOR Facility Sample Point: HP Separator Method: GPA 2286 Cylinder No: 01492 Analyzed: 08/18/2023 13:04:04

Sampled By:	John Fiel	der
Sample Of:	Gas	Spot
Sample Date:	08/08/202	23 07:00
Sample Conditions	:730 psig,	@ 84 °F
PO/Ref. No:	4300204	782

Analytical Data

Analytical Data							
Components	Mol. %	Wt. %	GPM at 14.696 psia				
Nitrogen	0.4574	0.2967		GPM TOTAL C2+	0.603		
Methane	3.4025	1.2640					
Carbon Dioxide	94.2460	96.0480					
Ethane	0.5306	0.3695	0.1423				
Propane	0.4499	0.4594	0.1243				
Iso-Butane	0.1121	0.1509	0.0368				
n-Butane	0.2822	0.3798	0.0892				
Iso-Pentane	0.1271	0.2124	0.0466				
n-Pentane	0.1080	0.1804	0.0393				
Hexanes	0.0696	0.1389	0.0287				
n-Hexane	0.0388	0.0774	0.0160				
Benzene	0.0089	0.0161	0.0025				
Cyclohexane	0.0222	0.0433	0.0076				
Heptanes	0.0608	0.1411	0.0281				
Methylcyclohexane	0.0242	0.0550	0.0098				
Toluene	0.0035	0.0075	0.0012				
Octanes	0.0264	0.0698	0.0136				
Ethylbenzene	0.0004	0.0010	0.0002				
Xylenes	0.0031	0.0076	0.0012				
Nonanes	0.0169	0.0502	0.0095				
Decanes Plus	0.0094	0.0310	0.0058				
	100.0000	100.0000	0.6027				
Calculated Physical F			Total	C10+			
Calculated Molecular V			43.18	142.28			
GPA 2172 Calculation							
Calculated Gross BTI	•		D°F				
Higher Heating Value,		TU	92.86	7742.9			
Water Sat. Gas Base E	-		91.27	7607.8			
Relative Density Real (Gas		1.4989	4.9126			
Compressibility Factor			0.9943				

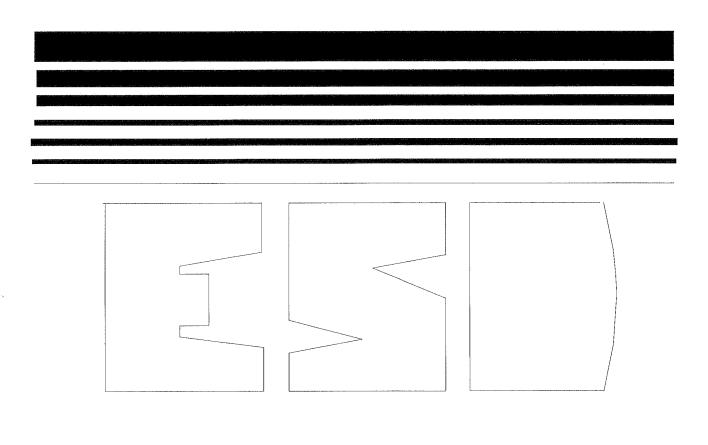
Data reviewed by: Ahsenur Kara, Lab Technician 1

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Normalized Component Calculation (Hydrogen Sulfide) Inlet Gas Analysis; Southern Petroleum Laboratories Report No.: 172-23080183-004A

COMPONENT	mole %	Normalized mole %	COMPONENT MW	Fuel Weight	Normalized WT %	Component BTU/scf	Partial Heating Values
Water	0.0000	0.0000	18	0.00	0.0000	0	0
Nitrogen	0.4574	0.4574	28.0134	0.13	0.7206	0	0
Carbon Dioxide	3.4025	3.4022	44.01	1.50	8.4215	0	0
Methane	94.2460	94.2375	16.043	15.12	85.0332	1010	952
Ethane	0.5306	0.5306	30.07	0.16	0.8973	1770	9
Hydrogen Sulfide	0.0000	0.0090	34.08	0.00	0.0173	637	0
Propane	0.4499	0.4499	44.097	0.20	1.1157	2516	11
I-Butane	0.1121	0.1121	58.123	0.07	0.3664	3252	4
N-Butane	0.2822	0.2822	58.123	0.16	0.9225	3262	9
I-Pentane	0.1271	0.1271	72.15	0.09	0.5157	4001	5
N-Pentane	0.1080	0.1080	72.15	0.08	0.4382	4009	4
Other/Iso Hexanes	0.0696	0.0696	86.177	0.06	0.3373	4750	3
N-Hexane	0.0388	0.0388	86.177	0.03	0.1880	4756	2
Methylcyclopentane	0.0000	0.0000	84.1608	0.00	0.0000	4501	0
Benzene	0.0089	0.0089	78.114	0.01	0.0391	3742	0
Cyclohexane	0.0222	0.0222	84.1608	0.02	0.1051	4482	1
Heptane	0.0608	0.0608	100.204	0.06	0.3426	5503	3
Methylcyclohexane	0.0242	0.0242	98.188	0.02	0.1336	5216	1
Toluene	0.0035	0.0035	92.141	0.00	0.0181	4475	0
Iso-Octane/224-Trimethylpentane	0.0000	0.0000	114.231	0.00	0.0000	6232	0
Octanes	0.0264	0.0264	114.231	0.03	0.1696	6249	2
Ethylbenzene	0.0004	0.0004	106.167	0.00	0.0024	5222	0
Xylenes	0.0031	0.0031	106.167	0.00	0.0185	5209	0
Nonanes	0.0169	0.0169	128.258	0.02	0.1219	6997	1
Decanes Plus	0.0094	0.0094	142.285	0.01	0.0752	7743	1
TOTALS	100.0000	100.0000	MW=	17.78	100.0000	btu/scf =	1009.81452
Max Total Hydrogen Sulfide:	0.009	mol%]	sg VOC wt% Toxic wt%	0.6131 4.9101 0.2662	-	


United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Protocol for Equipment Leak Emission Estimates

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

EPA Average Emission Factors

The EPA emission factors used by GRI-HAPCalc 3.01 to estimate fugitive emissions were developed from data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program at natural gas production and processing sites [U.S. Environmental Protection Agency, 1995; American Petroleum Institute, 1995]. Over 184,000 components at 20 sites were screened for total hydrocarbon (THC) emissions, and the results were averaged for each component type to develop THC emission factors. Furthermore, a statistical analysis conducted by the EPA found no difference in THC fugitive emissions by industry segment for oil and gas production operation. The average THC emission factors for equipment in gas and light liquid service are shown in Table 20.

	Emission Factor, lb THC/yr						
Component	Gas Service	Light Liquids Service	Heavy Liquids Service				
Connections	3.9	4.1	0.1				
Flanges	7.5	2.1	0.0075				
Open-Ended Line	39	27	2.7				
Pump Seals	46	250	NA				
Valves	87	48	0.16				
Other*	170		0.62				

Table 20.	EPA Average	Emission	Factors	for THC
-----------	-------------	----------	---------	---------

* The "Other" category includes compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.

To calculate speciated fugitive emissions for BTEX, methane, NMHC, and NMEHC, composition data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program are used with the THC emission factors above. The average compositions of fugitive leaks from production facilities and natural gas plants are shown in Table 21.

	Fractional Composition, lb/lb THC							
Compound	Gas Production/ Compressor Station	Gas Plant	Light Liquid Service	Heavy Liquid Service				
Benzene	0.00023	0.00123	0.00027	0.00935				
Toluene	0.00039	0.00032	0.00075	0.00344				
Ethylbenzene	0.000020	0.000010	0.000170	0.00051				
Xylenes (m,p,o)	0.00010	0.000040	0.000360	0.00372				
Methane	0.920	0.564	0.613	0.942				
NMHC	0.080	0.436	0.387	0.058				
NMEHC	0.0350	0.253	0.292	0.030				

Table 21. Fractional Composition of Fugitive Emissions	Table 21.	Fractional	Composition	of Fugitive	Emissions
--	-----------	------------	-------------	-------------	-----------

The following equation shows how annual emission rates are calculated from the above emission factors. The user-entered component count of each type of fugitive emission source is multiplied by the emission factor (lb THC/component/year) and the fractional composition (lb compound *i* / lb THC). This is then converted to an annual emission rate. Note that all calculations in GRI-HAPCalc 3.01 are done in U.S. Standard units and converted to metric units when necessary.

Normalized Component Calculation (Hydrogen Sulfide) Fugitive Emission Speciation - Light-Liquid Service

COMPONENT	mole %	Normalized mole %	COMPONENT MW	Fuel Weight	Normalized WT %	Component BTU/scf	Partial Heating Values
Water	0.0000	0.0000	18	0.00	0.0000	0	0
Nitrogen	0.0000	0.0000	28.0134	0.00	0.0000	0	0
Carbon Dioxide	0.0000	0.0000	44.01	0.00	0.0000	0	0
Methane	86.3875	86.3797	16.043	13.86	61.2917	1010	872
Ethane	7.1428	7.1421	30.07	2.15	9.4987	1770	126
Hydrogen Sulfide	0.0000	0.0090	34.08	0.00	0.0136	637	0
Propane	0.0000	0.0000	44.097	0.00	0.0000	2516	0
I-Butane	0.0000	0.0000	58.123	0.00	0.0000	3252	0
N-Butane	0.0000	0.0000	58.123	0.00	0.0000	3262	0
I-Pentane	0.0000	0.0000	72.15	0.00	0.0000	4001	0
N-Pentane	0.0000	0.0000	72.15	0.00	0.0000	4009	0
Other/Iso Hexanes	0.0000	0.0000	86.177	0.00	0.0000	4750	0
N-Hexane	0.0000	0.0000	86.177	0.00	0.0000	4756	0
Methylcyclopentane	0.0000	0.0000	84.1608	0.00	0.0000	4501	0
Benzene	0.0078	0.0078	78.114	0.01	0.0270	3742	0
Cyclohexane	0.0000	0.0000	84.1608	0.00	0.0000	4482	0
Heptane	0.0000	0.0000	100.204	0.00	0.0000	5503	0
Methylcyclohexane	0.0000	0.0000	98.188	0.00	0.0000	5216	0
Toluene	0.0184	0.0184	92.141	0.02	0.0750	4475	1
Iso-Octane/224-Trimethylpentane	0.0000	0.0000	114.231	0.00	0.0000	6232	0
Octanes	0.0000	0.0000	114.231	0.00	0.0000	6249	0
Ethylbenzene	0.0036	0.0036	106.167	0.00	0.0170	5222	0
Xylenes	0.0077	0.0077	106.167	0.01	0.0360	5209	0
Nonanes	0.0000	0.0000	128.258	0.00	0.0000	6997	0
Decanes	0.0000	0.0000	142.285	0.00	0.0000	7743	0
Other NM/NE HC	6.4323	6.4317	102.09	6.57	29.0411	5200	334
TOTALS	100.0000	100.0000	MW=	22.61	100.0000	btu/scf =	1335.05966
Max Total Hydrogen Sulfide:	0.009	mol%]	sg VOC wt% Toxic wt%	0.7796 29.1960 0.1550		

Tank Orientat	tion Horizontal		Tank	Shell Color/Shade		Red - Primer	Major City for Meterological Data	Jackson, MS
Tank Diameter (D	D ft) 11.80		Tank She	ell Paint Condition		average	Site Elevation (ft)	300
Vertical Height/Horizontal Length (H _s	_s ft) 16.00		Tank	Roof Color/Shade		Red - Primer	Atmospheric Pressure (P _A psia)	14.537
Roof Height (H _R	, ft)		Tank Roc	of Paint Condition		average	Table 7.1-2 Liquid	
Max Liquid Height (H _{LX}	(ft) 11.80			Roof Type	h	orizontal tank	RVP*	
Avg Liquid Height (H _L	ft) 5.90			Tank Insulation	1	no insulation	API gravity*	
Breather Vent Pressure Setting (P _{BP} ps	sig)		Та	nk Underground?		no	°F basis for gv*	
Breather Vent Vacuum Setting (P $_{\rm BV}$ ps	sig)		Annual Throug	hput (Q bbl/year)		3,095.24	bubble point psia	
actual tank pressure (P ₁ ps	osig) 0.0		Anı	nual Turnovers, N		9.93	API gravity at 60F	
Shell Paint Solar Absorptance (S	(S _A) 0.90			Annual Hours		8,760	API gravity at 100F	
Roof Paint Solar Absorptance (R	R _A) 0.9		tank max liquid	volume (V $_{LX}$ ft 3)		1,749.74		
breather vent pressure range (ΔP $_{B}$ μ	psi) 0.00		vapor space	e outage (H _{vo} ft)		4.634	Working Loss Product Factor (K _P)	1
roof outage (H _{RO}	, ft)		vapor space	volume (V _v ft ³)		874.87	working loss turnover factor K _N	1.000
ontents (if not selected from Table 7.1-2):				Antoine	constants (log ₁₀ , mi	mHg, °C)		sales oil data determines RVP er API pub 4683
component m	nole% MW	lb/mole	wt%	A	В	С		
Hexane N- 10	00.000 86.18	0 86.18000	100.00000	6.878	1171.500	224.370		

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID	19-13-CST
Tank Description	10-13,000 Gallon Chemical Storage Tanks
Company Name	Denbury Onshore, LLC

component	mole%	MW	lb/mole	wt%	A	В	С
Hexane N-	100.000	86.180	86.18000	100.00000	6.878	1171.500	224.370
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000		86.180	100.000			

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T _{AN} $^{\circ}$ F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T _{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature (T _B °F)	48.86	52.86	60.70	69.26	77.96	84.57	86.92	86.29	80.26	68.91	57.59	49.96	68.67
average vapor temperature (T _v $^{\circ}$ F)	52.67	57.91	67.35	77.82	87.34	94.41	96.49	95.28	87.92	75.04	62.07	53.49	75.64
daily ambient temperature range ($\Delta T_A ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range (ΔT_v °R)	27.74	33.75	40.18	47.40	49.07	50.31	48.74	47.14	43.07	38.96	32.28	27.23	40.51
daily average liquid surface temperature (T _{LA} °F)	50.77	55.38	64.02	73.54	82.65	89.49	91.70	90.79	84.09	71.98	59.83	51.73	72.16
daily maximum liquid surface temperature (T _{LX} $^{\circ}$ F)	57.70	63.82	74.07	85.39	94.92	102.07	103.89	102.57	94.85	81.71	67.90	58.53	82.29
daily minimum liquid surface temperature (T $_{LN}$ °F)	43.83	46.94	53.98	61.69	70.38	76.91	79.52	79.00	73.32	62.24	51.76	44.92	62.03
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	1.496	1.693	2.121	2.691	3.348	3.923	4.125	4.040	3.463	2.589	1.903	1.535	2.601
vapor pressure at daily max liq surface temp T_{LX} (P _{VX} psia)	1.800	2.110	2.726	3.569	4.433	5.186	5.394	5.243	4.427	3.275	2.340	1.840	3.319
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	1.235	1.347	1.631	1.998	2.489	2.921	3.109	3.071	2.676	2.026	1.536	1.273	2.015
daily vapor pressure range (ΔP_v)	0.5657	0.7633	1.0951	1.5717	1.9438	2.2659	2.2851	2.1726	1.7505	1.2492	0.8034	0.5671	1.3043
vapor space expansion factor (K_E)	0.0977	0.1250	0.1649	0.2216	0.2642	0.3051	0.3079	0.2926	0.2373	0.1778	0.1257	0.0969	0.1855
vapor molecular weight (M _v lb/lbmole)	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	1,476	1,333	1,476	1,428	1,476	1,428	1,476	1,476	1,428	1,476	1,428	1,476	17,377
monthly turnovers (N/month) with avg = total annual	0.84	0.76	0.84	0.82	0.84	0.82	0.84	0.84	0.82	0.84	0.82	0.84	9.93
vented vapor saturation factor (Ks)	0.7314	0.7063	0.6575	0.6021	0.5488	0.5093	0.4968	0.5020	0.5404	0.6113	0.6814	0.7262	0.6102
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0234	0.0263	0.0323	0.0402	0.0492	0.0569	0.0596	0.0585	0.0508	0.0389	0.0293	0.0240	0.0390
standing storage losses (L _s lb/month & avg is lb/yr)	71.95	72.82	99.20	119.42	150.85	168.86	182.80	179.43	150.83	119.36	87.02	73.72	1476.26
working losses (L _w lb/month & avg is lb/yr)	34.60	35.02	47.70	57.42	72.54	81.20	87.90	86.28	72.53	57.40	41.85	35.45	709.89
total losses (L _T lb/month & avg is lb/yr)	106.55	107.84	146.90	176.84	223.39	250.06	270.70	265.72	223.36	176.76	128.87	109.17	2186.15
max hourly Q in bbl/hour	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	ı
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	0.047	0.052	0.064	0.080	0.097	0.113	0.118	0.116	0.101	0.077	0.058	0.048	1
breathing/standing loss (L _s lb/hr)	0.097	0.108	0.133	0.196	0.260	0.322	0.332	0.313	0.237	0.160	0.121	0.099	
max hourly total loss (L _T lb/hr)	0.143	0.160	0.197	0.275	0.357	0.435	0.450	0.429	0.338	0.238	0.179	0.147	J

$L_{\rm S} \, {\rm sum} \, {\rm months} \, \, L_{\rm W} \, {\rm sum} \, {\rm months}$ L_T sum months 709.89

2186.15

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissior

1476.26

ons	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.161	0.332	1,410.123	
	Working Loss L _w	0.077	0.118	678.087	max hourly total loss may not add up to $L_{\rm S}$ + $L_{\rm W}$ as their max values may be in different months
	Total Loss L _T	0.238	0.450	2,088.210	

20-13-CST	
50-1.000 Gallon Chemical Storage Tanks	

Tank Description	50-1,000 Gallon Chemical Storage Tanks
Company Name	Denbury Onshore, LLC

Major City for Meterological Data	Jackson, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	
RVP*	
API gravity*	
°F basis for gv*	
bubble point psia	
API gravity at 60F	
API gravity at 100F	
Working Loss Product Factor (K_P)	1
working loss turnover factor K _N	0.475

Tank Orientation	Horizontal	Tank Shell Color/Shade	Red - Primer
Tank Diameter (D ft)	5.00	Tank Shell Paint Condition	average
Vertical Height/Horizontal Length (H _s ft)	7.00	Tank Roof Color/Shade	Red - Primer
Roof Height (H _R ft)		Tank Roof Paint Condition	average
Max Liquid Height (H _{LX} ft)	5.00	Roof Type	horizontal tank
Avg Liquid Height (H $_{L}$ ft)	2.50	Tank Insulation	no insulation
Breather Vent Pressure Setting (P _{BP} psig)		Tank Underground?	no
Breather Vent Vacuum Setting (P _{BV} psig)		Annual Throughput (Q bbl/year)	2,380.95
actual tank pressure (P , psig)	0.0	Annual Turnovers, N	97.25
Shell Paint Solar Absorptance (S $_A$)	0.90	Annual Hours	8,760
Roof Paint Solar Absorptance (R_A)	0.9	tank max liquid volume (V _{LX} ft ³)	137.44
breather vent pressure range (ΔP_B psi)	0.00	vapor space outage (H _{vo} ft)	1.963
roof outage (H _{RO} ft)		vapor space volume (V $_V$ ft 3)	68.72

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

*sales oil data determines RVP per API pub 4683

ntents (if not selected from	Table 7.1-2).				Antonic	constants (log ₁₀ , mi	,,, c)
component	mole%	MW	lb/mole	wt%	А	В	С
Hexane N-	100.000	86.180	86.18000	100.00000	6.878	1171.500	224.3
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000	•	86.180	100.000		•	

Tank ID

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature $(T_{AX} \circ F)$	56.50	60.80	68.10	75.70	83.00	89.00	91.10	91.20	86.50	77.10	66.30	58.10	75.30
hourly average minimum ambient temperature (T _{AN} $^\circ$ F)	37.00	39.30	45.90	53.30	62.50	69.20	72.10	71.40	65.50	53.90	43.90	37.90	54.30
daily total solar insolation factor (I btu/ft ² day)	783	1039	1369	1762	1929	2025	1969	1849	1576	1262	922	726	1434
daily average ambient temperature (T _{AA} °F)	46.75	50.05	57.00	64.50	72.75	79.10	81.60	81.30	76.00	65.50	55.10	48.00	64.80
liquid bulk temperature $(T_B \circ F)$	48.86	52.86	60.70	69.26	77.96	84.57	86.92	86.29	80.26	68.91	57.59	49.96	68.67
average vapor temperature (T _v $^{\circ}$ F)	52.64	57.86	67.29	77.75	87.25	94.32	96.40	95.20	87.85	74.99	62.03	53.46	75.58
daily ambient temperature range ($\Delta T_A ^\circ R$)	19.50	21.50	22.20	22.40	20.50	19.80	19.00	19.80	21.00	23.20	22.40	20.20	21.00
daily vapor temperature range (ΔT_v °R)	27.74	33.75	40.18	47.40	49.07	50.31	48.74	47.14	43.07	38.96	32.28	27.24	40.51
daily average liquid surface temperature (T _{LA} °F)	50.75	55.36	63.99	73.50	82.61	89.45	91.66	90.75	84.05	71.95	59.81	51.71	72.13
daily maximum liquid surface temperature (T _{LX} °F)	57.69	63.80	74.04	85.35	94.87	102.02	103.85	102.53	94.82	81.69	67.88	58.52	82.25
daily minimum liquid surface temperature (T _{LN} $^{\circ}$ F)	43.81	46.92	53.95	61.65	70.34	76.87	79.47	78.96	73.28	62.21	51.74	44.90	62.00
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	1.495	1.692	2.119	2.688	3.345	3.919	4.121	4.036	3.460	2.588	1.902	1.534	2.599
vapor pressure at daily max liq surface temp T_{LX} (P _{VX} psia)	1.800	2.109	2.724	3.566	4.429	5.182	5.389	5.239	4.423	3.273	2.339	1.839	3.317
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	1.234	1.346	1.630	1.996	2.487	2.918	3.106	3.068	2.674	2.024	1.536	1.272	2.014
daily vapor pressure range (ΔP_v)	0.5655	0.7629	1.0944	1.5705	1.9422	2.2640	2.2833	2.1710	1.7493	1.2485	0.8030	0.5672	1.3035
vapor space expansion factor (K_{E})	0.0977	0.1249	0.1649	0.2214	0.2640	0.3048	0.3076	0.2924	0.2371	0.1778	0.1257	0.0969	0.1854
vapor molecular weight (M $_{ m v}$ lb/lbmole)	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18	86.18
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	1,135	1,025	1,135	1,099	1,135	1,099	1,135	1,135	1,099	1,135	1,099	1,135	13,367
monthly turnovers (N/month) with avg = total annual	8.26	7.46	8.26	7.99	8.26	7.99	8.26	8.26	7.99	8.26	7.99	8.26	97.25
vented vapor saturation factor (K _s)	0.8654	0.8503	0.8193	0.7814	0.7418	0.7103	0.6999	0.7042	0.7353	0.7878	0.8347	0.8623	0.7871
vent setting correction factor (K _B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0234	0.0263	0.0323	0.0402	0.0491	0.0568	0.0595	0.0584	0.0507	0.0389	0.0293	0.0240	0.0390
standing storage losses (L _s lb/month & avg is lb/yr)	7.28	7.37	10.04	12.08	15.27	17.09	18.50	18.16	15.27	12.08	8.81	7.46	149.41
working losses (L _w lb/month & avg is lb/yr)	12.64	12.79	17.42	20.97	26.49	29.65	32.10	31.51	26.49	20.97	15.29	12.95	259.28
total losses (L _T lb/month & avg is lb/yr)	19.92	20.16	27.46	33.06	41.76	46.74	50.60	49.67	41.76	33.05	24.10	20.42	408.70
max hourly Q in bbl/hour	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	′
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	0.036	0.040	0.049	0.061	0.075	0.087	0.091	0.089	0.077	0.059	0.045	0.037	
breathing/standing loss (L _s lb/hr)	0.010	0.011	0.013	0.020	0.028	0.035	0.037	0.034	0.025	0.016	0.012	0.010	
max hourly total loss (L _T lb/hr)	0.046	0.051	0.063	0.081	0.102	0.122	0.127	0.124	0.103	0.076	0.057	0.047	

$L_{\rm S} \, {\rm sum} \, {\rm months} \, \, L_{\rm W} \, {\rm sum} \, {\rm months}$ L_T sum months 259.28

408.70

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissior

149.41

ons	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.016	0.037	142.724	
	Working Loss L _w	0.028	0.091	247.677	max hourly total loss may not add up to $L_s + L_w$ as their max values may be in different months
	Total Loss L _T	0.045	0.127	390.401	

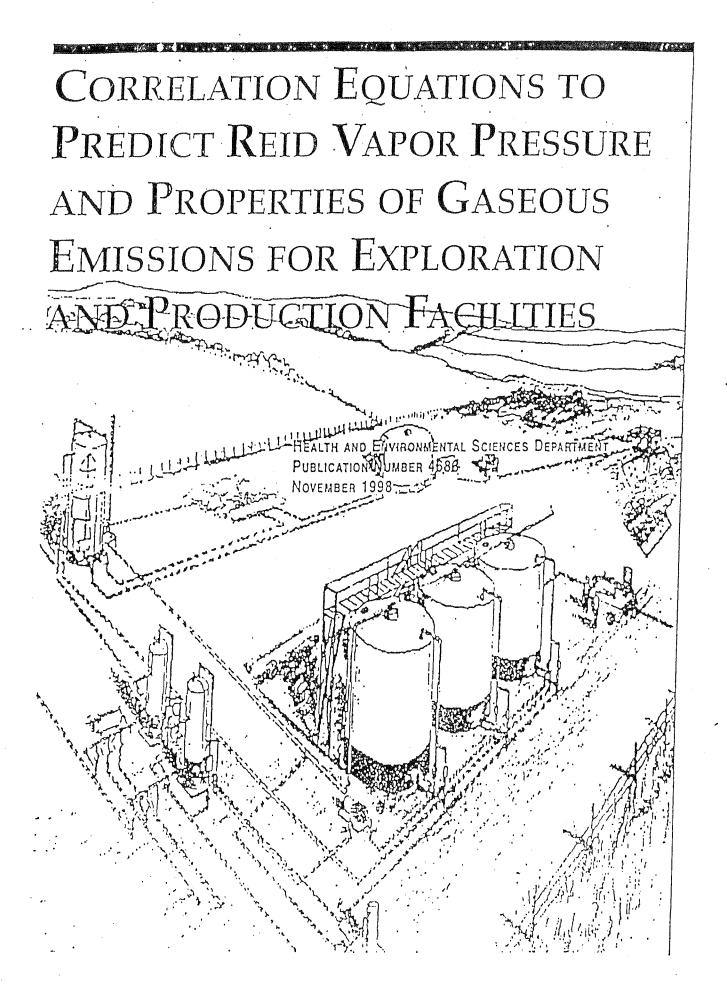


Table 3-2 summarizes Pearson correlation coefficients (r) calculated for the sales oil RVP relative to the other variables. Better correlations are indicated as |r| approaches 1. Table 3-2 shows that sales oil APIG is the best predictor of RVP. (Note that the sales oil bubble point is an equally good predictor, r = 0.78.)

	Pearson Correlation
Variable	With RVP
SP	0.52
ln(SP)	0.51
ST	-0.37
APIG	0.79

Table 3-2. Single-parameter correlation coefficients for RVP.

REGRESSION ANALYSIS

• • • • • • • • • • • • • • •

A multivariate linear regression was developed, represented by the equation shown below.

RVP = 0.003 + 0.075 In(SP) - 0.016 ST + 0.165 APIG

(Equation 3-4)

The correlation coefficient for Equation 3-4 (r = 0.80) is not significantly better than the singleparameter coefficient for sales oil APIG shown in Table 3-2. Therefore, the single-parameter fit based on sales oil APIG is recommended for use (see Figure 3-2).

RVP = -1.699 + 0.179 APIG

(Equation 3-5)

The error of the estimate (E) is one measure of the performance of a model or assumption, where the error equals the observed value (Obs) less the estimated value (Est), E = Obs - Est. In Figure 3-2, it is obvious that the error associated with the regression line is much less than the error associated with the default assumption, RVP = 5 psia.

$$P = \exp\left\{ \left[\left(\frac{2,799}{T + 459.6} \right) - 2.227 \right] \log_{10}(RVP) - \left(\frac{7,261}{T + 459.6} \right) + 12.82 \right\}$$

Where:

P = stock true vapor pressure, in pounds per square inch absolute.

T = stock temperature, in degrees Fahrenheit.

RVP = Reid vapor pressure, in pounds per square inch.

Note: This equation was derived from a regression analysis of points read off Figure 7.1-13a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields *P* values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-13b. Equation for true vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.⁴ See note at Figure 7.1-13a.

$$\begin{split} P &= \exp\left\{\left[\begin{array}{c} 0.7553 - \left(\frac{413.0}{T+459.6}\right) \right] S^{0.5} \log_{10}\left(\text{RVP}\right) - \left[1.854 - \left(\frac{1,042}{T+459.6}\right) \right] S^{0.5} \right. \\ & \left. + \left[\left(\frac{2,416}{T+459.6}\right) - 2.013 \right] \log_{10}\left(\text{RVP}\right) - \left(\frac{8,742}{T+459.6}\right) + 15.64 \right] \right] \end{split}$$
 Where:
$$\begin{split} P &= \text{ stock true vapor pressure, in pounds per square inch absolute.} \\ T &= \text{ stock true vapor pressure, in degrees Fahrenheit.} \\ \text{RVP} &= \text{Reid vapor pressure, in pounds per square inch.} \\ S &= \text{ slope of the ASTM distillation curve at 10 percent evaporated, in degrees Fahrenheit per percent.} \end{split}$$

Note: This equation was derived from a regression analysis of points read off Figure 7.1-14a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields P values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-14b. Equation for true vapor pressure of refined petroleum stocks with a Reid vapor pressure of 1 to 20 pounds per square inch.⁴ See note at Figure 7.1-14a.

A = $15.64 - 1.854 S^{0.5} - (0.8742 - 0.3280 S^{0.5})\ln(RVP)$ B = $8,742 - 1,042 S^{0.5} - (1,049 - 179.4 S^{0.5})\ln(RVP)$
where:
RVP = stock Reid vapor pressure, in pounds per square inch
In = natural logarithm function
S = stock ASTM-D86 distillation slope at 10 volume percent
evaporation (°F/vol %)

Figure 7.1-15. Equations to determine vapor pressure constants A and B for refined petroleum stocks.²²

Petroleum Liquid Mixture	Vapor Molecular Weight ^a	Liquid Molecular Weight ^b	Liquid Density ª	ASTM D86 Distillation Slope ^c	Vapor Pressure Equation Constant ^d	Vapor Pressure Equation Constant ^d	True Vapor Pressure (at 60 °F)
	M_V	M_L	W_L	S	A	В	P_{VA}
	lb/lb-mole	lb/lb-mole	lb/gal	°F/vol %	dimensionless	°R	psia
Midcontinent Crude Oil	50	207	7.1	-	Figure 7.1-16	Figure 7.1-16	_
Refined Petroleum Stocks	_	_	-	-	Figure 7.1-15	Figure 7.1-15	_
Motor Gasoline RVP 13	62	92	5.6	3.0	11.644	5043.6	7.0
Motor Gasoline RVP 10	66 ^e	92	5.6	3.0	11.724	5237.3	5.2
Motor Gasoline RVP 7	68	92	5.6	3.0	11.833	5500.6	3.5
Light Naphtha RVP 9- 14	_	_	-	3.5	_	-	_
Naphtha RVP 2-8	-	-	-	2.5	-	-	-
Aviation Gasoline	-	-	_	2.0	_	-	_
Jet Naphtha (JP-4)	80	120	6.4	_	11.368	5784.3	1.3
Jet Kerosene (Jet A)	130	162	7.0	_	12.390	8933.0	0.008
No. 2 Fuel Oil (Diesel)	130	188	7.1	_	12.101	8907.0	0.006
No. 6 Fuel Oil f	130	387	7.9	_	10.781	8933.0	0.002
Vacuum Residual Oil ^g	190	387	7.9	_	10.104	10,475.5	0.00004

Table 7.1-2. PROPERTIES (Mv, ML, PvA, WL) OF SELECTED PETROLEUM LIQUIDS^{a, e}

^a References 10 and 11

^b Liquid molecular weights from "Memorandum from Patrick B. Murphy, Radian/RTP to James F. Durham, EPA/CPB Concerning Petroleum Refinery Liquid HAP and Properties Data, August 10, 1993," as adopted in versions 3.1 and 4.0 of EPA's TANKS software.

^c Reference 4.

^d For motor gasolines, see Figure 7.1-15;

for crude oil, see Figure 7.1-16;

for Jet Naphtha, Jet Kerosene, and No. 2 Fuel Oil, see Barnett and Hibbard¹⁰;

for No. 6 Fuel Oil.²²

^e Alternatively, in the absence of measured data, a value of 66 lb/lb-mole may be assumed for all gasolines, in that the variability shown as a function of RVP is speculative.

^f This is for a blend of Vacuum Residual Oil with a light distillate cutter stock, or similar mixture. Vapor pressure constants given will result in higher vapor pressure values than shown previously in AP-42 for Residual Oil No. 6.

^g This is the straight residue from the bottom of the vacuum distillation column, prior to any further processing or blending. Properties given for Vacuum Residual Oil are those given for Residual Oil No. 6 previously in AP-42.

5.2 Transportation And Marketing Of Petroleum Liquids¹⁻³

5.2.1 General

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil is transported from production operations to a refinery by tankers, barges, rail tank cars, tank trucks, and pipelines. Refined petroleum products are conveyed to fuel marketing terminals and petrochemical industries by these same modes. From the fuel marketing terminals, the fuels are delivered by tank trucks to service stations, commercial accounts, and local bulk storage plants. The final destination for gasoline is usually a motor vehicle gasoline tank. Similar distribution paths exist for fuel oils and other petroleum products. A general depiction of these activities is shown in Figure 5.2-1.

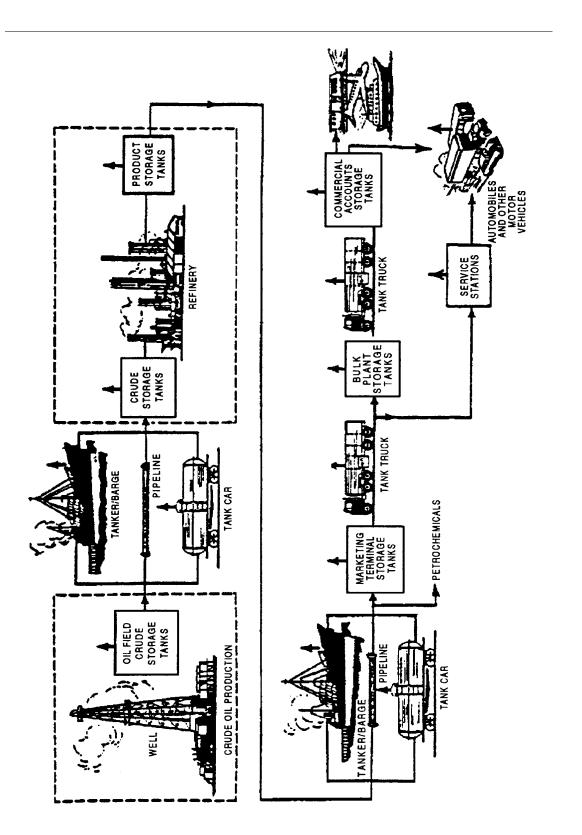
5.2.2 Emissions And Controls

Evaporative emissions from the transportation and marketing of petroleum liquids may be considered, by storage equipment and mode of transportation used, in four categories:

- 1. Rail tank cars, tank trucks, and marine vessels: loading, transit, and ballasting losses.
- 2. Service stations: bulk fuel drop losses and underground tank breathing losses.
- 3. Motor vehicle tanks: refueling losses.
- 4. Large storage tanks: breathing, working, and standing storage losses. (See Chapter 7, "Liquid Storage Tanks".)

Evaporative and exhaust emissions are also associated with motor vehicle operation, and these topics are discussed in AP-42 *Volume II: Mobile Sources*.

5.2.2.1 Rail Tank Cars, Tank Trucks, And Marine Vessels -


Emissions from these sources are from loading losses, ballasting losses, and transit losses.

5.2.2.1.1 Loading Losses -

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo;
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

The principal methods of cargo carrier loading are illustrated in Figure 5.2-2, Figure 5.2-3, and Figure 5.2-4. In the splash loading method, the fill pipe dispensing the cargo is lowered only part way into the cargo tank. Significant turbulence and vapor/liquid contact occur during the splash

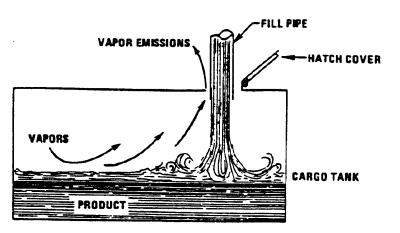


Figure 5.2-2. Splash loading method.

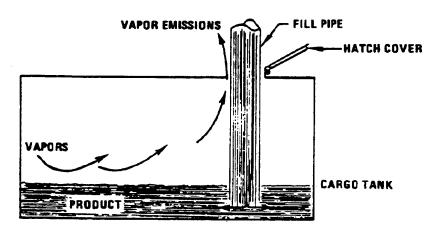


Figure 5.2-3. Submerged fill pipe.

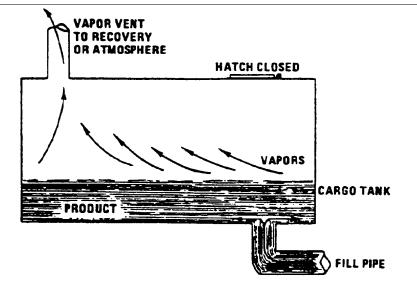


Figure 5.2-4. Bottom loading.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

- $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

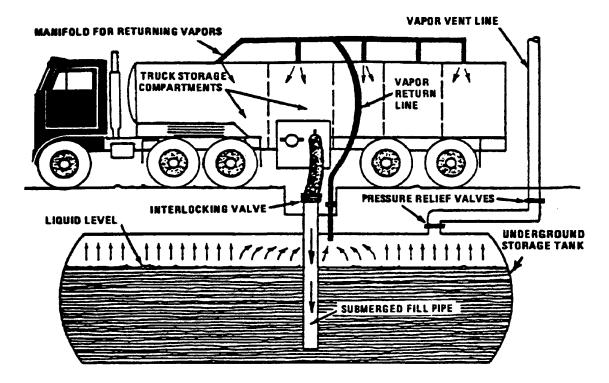


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

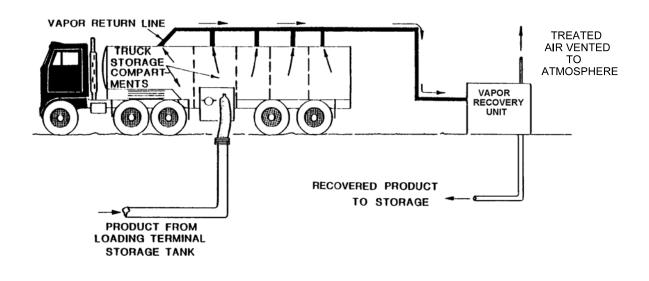


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L₁) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

- S = saturation factor (see Table 5.2-1) 1.00
- P = true vapor pressure of gasoline = 6.6 psia
- M = molecular weight of gasoline vapors = 66
- T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb}/10^3 \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal})(8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds} (\text{lb})$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations.⁸ These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are

expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons ($lb/10^3$ gal).

		Ships/Ocean Barges ^b		Barges ^b	
Vessel Tank Condition	Previous Cargo	mg/L Transferred	lb/10 ³ gal Transferred	mg/L Transferred	lb/10 ³ gal Transferred
Uncleaned	Volatile ^c	315	2.6	465	3.9
Ballasted	Volatile	205	1.7	d	d
Cleaned	Volatile	180	1.5	ND	ND
Gas-freed	Volatile	85	0.7	ND	ND
Any condition	Nonvolatile	85	0.7	ND	ND
Gas-freed	Any cargo	ND	ND	245	2.0
Typical overall situation ^e	Any cargo	215	1.8	410	3.4

Table 5.2-2 (Metric And English Units). VOLATILE ORGANIC COMPOUND (VOC) EMISSION FACTORS FOR GASOLINE LOADING OPERATIONS AT MARINE TERMINALS^a

^a References 2,9. Factors are for both VOC emissions (which excludes methane and ethane) and total organic emissions, because methane and ethane have been found to constitute a negligible weight fraction of the evaporative emissions from gasoline. ND = no data.

^b Ocean barges (tank compartment depth about 12.2 m [40 ft]) exhibit emission levels similar to tank ships. Shallow draft barges (compartment depth 3.0 to 3.7 m [10 to 12 ft]) exhibit higher emission levels.

с Volatile cargoes are those with a true vapor pressure greater than 10 kilopascals (kPa) (1.5 psia).

^d Barges are usually not ballasted.

e Based on observation that 41% of tested ship compartments were uncleaned, 11% ballasted, 24% cleaned, and 24% gas-freed. For barges, 76% were uncleaned.

In addition to Equation 1, which estimates emissions from the loading of petroleum liquids, Equation 2 has been developed specifically for estimating emissions from the loading of crude oil into ships and ocean barges:

$$C_{\rm L} = C_{\rm A} + C_{\rm G} \tag{2}$$

where:

 C_L = total loading loss, lb/10³ gal of crude oil loaded C_A = arrival emission factor, contributed by vapors in the empty tank compartment before loading, lb/10³ gal loaded (see Note below)

 $C_{\rm G}$ = generated emission factor, contributed by evaporation during loading, lb/10³ gal loaded

Note: Values of C_A for various cargo tank conditions are listed in Table 5.2-3.

5.2-3 (English Units). AVERAGE ARRIVAL EMISSION FACTORS, C_A, FOR CRUDE OIL LOADING EMISSION EQUATION^a

Ship/Ocean Barge Tank Condition	Previous Cargo	Arrival Emission Factor, lb/10 ³ gal
Uncleaned	Volatile ^b	0.86
Ballasted	Volatile	0.46
Cleaned or gas-freed	Volatile	0.33
Any condition	Nonvolatile	0.33

^a Arrival emission factors (C_A) to be added to generated emission factors (C_G) calculated in Equation 3 to produce total crude oil loading loss (C_L). Factors are for total organic compounds; VOC emission factors average about 15% lower, because VOC does not include methane or ethane.

^b Volatile cargoes are those with a true vapor pressure greater than 10 kPa (1.5 psia).

This equation was developed empirically from test measurements of several vessel compartments.⁸ The quantity C_{G} can be calculated using Equation 3:

$$C_{G} = 1.84 (0.44 P - 0.42) \frac{MG}{T}$$
 (3)

where:

P = true vapor pressure of loaded crude oil, psia M = molecular weight of vapors, lb/lb-mole G = vapor growth factor = 1.02 (dimensionless) T = temperature of vapors, °R (°F + 460)

Emission factors derived from Equation 3 and Table 5.2-3 represent total organic compounds. Volatile organic compound (VOC) emission factors (which exclude methane and ethane because they are exempted from the regulatory definition of "VOC") for crude oil vapors have been found to range from approximately 55 to 100 weight percent of these total organic factors. When specific vapor composition information is not available, the VOC emission factor can be estimated by taking 85 percent of the total organic factor.³

5.2.2.1.2 Ballasting Losses -

Ballasting operations are a major source of evaporative emissions associated with the unloading of petroleum liquids at marine terminals. It is common practice to load several cargo tank compartments with sea water after the cargo has been unloaded. This water, termed "ballast", improves the stability of the empty tanker during the subsequent voyage. Although ballasting practices vary, individual cargo tanks are ballasted typically about 80 percent, and the total vessel 15 to 40 percent, of capacity. Ballasting emissions occur as vapor-laden air in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at a loading port, the ballast water is pumped from the cargo tanks before the new cargo is loaded. The ballasting of cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during subsequent tanker loading. Regulations administered by the U. S. Coast Guard require that, at marine terminals located in ozone nonattainment areas, large tankers with crude oil washing systems contain the organic vapors from ballasting.¹⁰ This is accomplished principally by displacing the vapors during ballasting into a cargo tank being simultaneously unloaded. In other areas, marine vessels emit organic vapors directly to the atmosphere.

Equation 4 has been developed from test data to calculate the ballasting emissions from crude oil ships and ocean barges⁸:

$$L_{\rm B} = 0.31 + 0.20 \,\mathrm{P} + 0.01 \,\mathrm{PU}_{\rm A} \tag{4}$$

where:

- L_B = ballasting emission factor, lb/10³ gal of ballast water P = true vapor pressure of discharged crude oil, psia
- U_{A} = arrival cargo true ullage, before dockside discharge, measured from the deck, feet; (the term "ullage" here refers to the distance between the cargo surface level and the deck level)

Table 5.2-4 lists average total organic emission factors for ballasting into uncleaned crude oil cargo compartments. The first category applies to "full" compartments wherein the crude oil true ullage just before cargo discharge is less than 1.5 meters (m) (5 ft). The second category applies to lightered, or short-loaded, compartments (part of cargo previously discharged, or original load a partial fill), with an arrival true ullage greater than 1.5 m (5 ft). It should be remembered that these tabulated emission factors are examples only, based on average conditions, to be used when crude oil vapor pressure is unknown. Equation 4 should be used when information about crude oil vapor pressure and cargo compartment condition is available. The following sample calculation illustrates the use of Equation 4.

5.2-4 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR CRUDE OIL BALLASTING^a

	Average Emission Factors			
	By Ca	tegory	Typica	l Overall ^b
Compartment Condition Before Cargo Discharge	mg/L Ballast Water	lb/10 ³ gal Ballast Water	mg/L Ballast Water	lb/10 ³ gal Ballast Water
Fully loaded ^c	111	0.9		
Lightered or previously short loaded ^d	171	1.4 A	129	1.1

^a Assumes crude oil temperature of 16°C (60°F) and RVP of 34 kPa (5 psia). VOC emission factors average about 85% of these total organic factors, because VOCs do not include methane or ethane.

^b Based on observation that 70% of tested compartments had been fully loaded before ballasting. May not represent average vessel practices.

^c Assumed typical arrival ullage of 0.6 m (2 ft).

^d Assumed typical arrival ullage of 6.1 m (20 ft).